Прогрессии и последовательности: решаем огэ по математике

Виды арифметических прогрессий

Существует всего три вида арифметической прогрессии. 

1. Возрастающая арифметическая прогрессия. 

Разность прогрессии — положительное число, то есть d > 0, а каждый следующий член прогрессии больше предыдущего. 

Прогрессия 2, 4, 6, 8 является возрастающей. 

2. Убывающая арифметическая прогрессия. 

Разность прогрессии — отрицательное число, то есть d < 0, а каждый следующий член прогрессии меньше предыдущего. 

Примером убывающей арифметической прогрессии может служить 100, 95, 90, 85 и так далее.  

3. Стационарная арифметическая прогрессия. 

В этой арифметической прогрессии разность будет равна 0, то есть d = 0. Следовательно, члены прогрессии не будут отличаться друг от друга. 

Например, прогрессия 3, 3, 3, 3, 3 будет являться стационарной. 

Несколько слов о прогрессии геометрической

Алгебраическая и геометрическая прогрессии, как правило, рассматриваются в рамках одной темы, поэтому полезно дать понятие и о втором типе упорядоченного числового ряда. Итак, прогрессия геометрическая представляет собой ряд чисел, которые подчиняются закону:

То есть в отличие от арифметической, здесь для получения всех элементов необходимо не прибавлять одно число, а умножать на него (r называется знаменателем).

Из определения понятно, что геометрическая прогрессия растет (уменьшается) гораздо быстрее, чем арифметическая.

Применяется она часто в геометрии, например при вычислении площадей фигур с помощью их разбиения на отдельные элементы (метод деления пополам).

Примеры задач с решением

Рассмотрим как решать задачи на заданную тему.

Пример 1

Требуется вычислить 574 член в ряду арифметической прогрессии, первые три члена которой «8, 15, 22…».

Вариант рассуждений по примеру 1. Для нахождения любого конкретного элемента ряда нам необходима информация о значении первого члена (a1) и о разности (d). Чтобы вычислить разность, вычитаем из второго члена ряда первый (15 – и получаем d = 7. Теперь мы можем считать по формуле:

Подставляя полученные значения, получим выражение вида a574 = 8 + (574-1) * 7.

После вычисления получаем ответ: a574 = 4019.

Пример 2

Требуется вычислить 544 член ряда, являющийся арифметической прогрессией, при условии, что 154-ый член равен 17, а разность (d) равна 8.

Вариант рассуждений по примеру 2. Пользоваться в данной ситуации мы будем формулой из предыдущего примера:

Подставляя известные значения, получаем выражение – а544 = 17 + (544 1) * 8.

Вычисляя, получаем ответ а544 = 4361.

Пример 3

Для подготовки к экзамену по биологии студенту Смирнову необходимо выучить 730 вопросов (включая загадки). Известно, что он весьма обеспокоен и по мере приближения даты экзамена учит ежедневно на 27 вопросов больше, чем в предыдущий день. Друг Смирнова выяснил, что тот в первый день выучил всего 17 вопросов.

Требуется выяснить, сколько времени у студента ушло на подготовку.

Вариант рассуждений по примеру 3. Очевидно, что случай с подготовкой студента к экзамену решается через формулы арифметической прогрессией (поскольку присутствует фиксированная разность d = 17). Производим подстановку известных данных:

После подстановки получаем выражение: 730 = 17 + (n 1) * 27.

После вычислений определяем ответ – 27 дней.

Арифметическая прогрессия является наиболее простой из всех числовых зависимостей. Использование описанных формул позволит намного ускорить вычисления в задачах, где это требуется.

Кроме этого, для упрощения можно использовать онлайн калькулятор. В школе данную тему изучают в программе за 9 класс, а основные задания касаются нахождения членов и сумм.

Пример №3: составление прогрессии

Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, — 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 — a 1)/4 = (5 — (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = — 4, a 2 = — 4 + 2,25 = — 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, …,. Как рассчитать сумму 100 этих чисел?

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter

Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050

Любопытно отметить, что эта задача носит название «гауссовой», поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = …, а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

Определение числовой последовательности

Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.

Последовательности можно задавать разными способами:

  1. Словесно — когда правило последовательности объясняется словами:

    «Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23…»

  2. Аналитически — когда указана формула ее n-го члена: yn = f(n).

    Последовательность yn = C называют постоянной или стационарной.

  3. Рекуррентно — когда указывается правило, которое помогает вычислить n-й член последовательности, если известны её предыдущие члены.

    Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.

    Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

  4. Графически — когда график последовательности состоит из точек с абсциссами
    1, 2, 3, 4…

Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.

Свойства числовых последовательностей:

  1. Последовательность {yn} называют возрастающей, если каждый ее член кроме первого больше предыдущего:

    y1 < y2 < y3 < … < yn < yn+1 < …

  2. Последовательность {yn} называют убывающей, если каждый ее член кроме первого меньше предыдущего:

    y1 > y2 > y3 > … > yn > yn+1 > …

    Возрастающие и убывающие последовательности называют монотонными последовательностями.

  3. Последовательность можно назвать периодической, если существует такое натуральное число T, что начиная с некоторого N, выполняется равенство: yn = yn+T. Число T — длина периода.

Запишем числа, которые первые пришли в голову: 7, 19, 0, −1, −2, −11, 0… Сколько бы чисел не написали, всегда можно сказать, какое из них первое, какое — второе и так до последнего. То есть мы можем их пронумеровать.

Пример числовой последовательности выглядит так:

В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.

N-ный член алгебраической последовательности — это число с порядковым номером n.

Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2,…, a10…, an.

N-ый член последовательности можно задать формулой. Например:

  • Формула an = 3n − 5 задает последовательность: −2, 1, 4, 7, 10…
  • Формула an = 1 : (n + 2) задает последовательность: 1/3, 1/4, 1/5, 1/6…

Чему равна сумма арифметической прогрессии: формула

Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.

Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:

Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.

Если обобщить эти рассуждения, то можно записать следующее выражение:

Это выражение показывает, что совсем не обязательно суммировать подряд все элементы, достаточно знать значение первого a 1 и последнего a n , а также общего числа слагаемых n.

Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.

Арифметическая прогрессия — основные понятия

Определение

Арифметическая прогрессия — это монотонная последовательность, которая состоит из ряда чисел.

В этом ряду каждое последующее число есть результат добавления к предыдущему одного и того же числа d. В случае, если \(d\;>\;0,\) последовательность называется возрастающей, а если \(d\;<\;0\) — убывающей. В ситуации, если d = 0 последовательность стационарна.

Наиболее простым примером арифметической прогрессии будет являться бесконечная последовательность натуральных чисел.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Число d является разностью арифметической прогрессии или шагом, а числа последовательности — членами прогрессии.

Теорема

Последовательность \({a_n}\) будет являться арифметической прогрессией исключительно в тех случаях, когда любой ее член, начиная со второго, будет равняться полусумме последующего и предыдущего членов:

\(a_n\;=\;\frac{a_{n-1}\;+\;a_{n+1}}2\)

Доказательство

Если говорить об арифметической прогрессии, то для всех n = 2, 3… справедливо:

\(d\;=\;a_n\;-\;a_{n-1}\;=\;a_{n+1}-a_n\)

Тогда:

\(2a_n\;=a_{n-1}+a_{n+1}\)

Откуда получается:

\(a_n\;=\;\frac{a_{n-1}\;+a_{n+1}}2\)

Вычисление каждого следующего члена арифметической прогрессии возможно с использованием следующей формулы:

\(a_n\;=\;a_{n-1}\;+\;d\)

Формула общего члена для расчета любого из членов прогрессии выглядит следующим образом:

\(a_n\;=\;a_1\;+\;(n-1)d\)

Примеры решения задач

Рассмотрим два примера алгебраической прогрессии.

1. Известно, что 9-й член равен 7, а 21-й равен 51. Необходимо найти первые 5 членов этой арифметической прогрессии.

Условие задачи позволяет сразу же рассчитать разность d, применяя формулу с an и am, которая записана выше. Имеем:

При получении разности d мы выполнили округление до 3 знака после запятой.

Теперь можно рассчитать первый элемент ряда. Для этого воспользуемся данными для 9 члена:

Для решения задачи осталось сделать последний шаг: последовательно добавить 4 раза величину d к первому элементу. Получаем:

Напомним, что все рассчитанные значения справедливы до третьего знака после запятой.

2. Рабочие складывали спиленные стволы деревьев в виде пирамиды. Известно, что они сложили всего 33 бревна, причем до завершения пирамиды им не хватило всего 3 бревна. Следует определить, сколько рядов бревен сложили рабочие.

Ответ на этот вопрос заключается в решении алгебраической прогрессии, но для того, чтобы к нему приступать, необходимо внимательно разобраться с данным условием.

Во-первых, поскольку бревна складываются в пирамиду, значит, в каждом предыдущем ряду было на одно бревно больше, то есть d = 1. Во-вторых, если известно, что не хватило до завершения пирамиды всего 3 бревна, тогда два верхних ряда остались пустыми:

Учтем эти три бревна, добавив их к 33 уже сложенным, и определим неизвестное число рядов n, пользуясь формулами для суммы и n-го члена:

Подставляем в последнее равенство известные данные и решаем полученное квадратное уравнение относительно n:

Отрицательное значение отбросим сразу, поскольку оно противоречит условию задачи. Таким образом, 8 рядов пирамиды будут содержать 36 бревен. Так как рабочие не завершили два верхних ряда, значит, всего они сложили 6 рядов бревен.

Формулы для определения элементов прогрессии

В общем, информации выше уже достаточно, чтобы переходить к решению конкретных задач. Тем не менее до того, как будет дана прогрессия арифметическая, и найти разность ее будет необходимо, приведем пару полезных формул, облегчив тем самым последующий процесс решения задач.

Несложно показать, что любой элемент последовательности с номером n может быть найден следующим образом:

Действительно, проверить эту формулу может каждый простым перебором: если подставить n = 1, то получится первый элемент, если подставить n = 2, тогда выражение выдает сумму первого числа и разности, и так далее.

Условия многих задач составляются таким образом, что по известной паре чисел, номера которых в последовательности также даны, необходимо восстановить весь числовой ряд (найти разность и первый элемент). Сейчас мы решим эту задачу в общем виде.

Итак, пусть даны два элемента с номерами n и m. Пользуясь полученной выше формулой, можно составить систему из двух уравнений:

Таким образом, мы исключили одну неизвестную (a1). Теперь можно записать окончательное выражение для определения d:

Мы получили очень простую формулу: чтобы вычислить разность d в соответствии с условиями задачи, необходимо лишь взять отношение разностей самих элементов и их порядковых номеров

Следует обратить на один важный момент внимание: разности берутся между “старшим” и “младшим” членами, то есть n > m (“старший” – имеется в виду стоящий дальше от начала последовательности, его абсолютное значение может быть как больше, так и меньше более “младшего” элемента)

Выражение для разности d прогрессии следует подставить в любое из уравнений в начале решения задачи, чтобы получить значение первого члена.

Далее в статье приведем примеры решения задач на вычисления d и на восстановление числового ряда алгебраической прогрессии. Здесь же хотелось бы отметить один важный момент.

В наш век развития компьютерных технологий многие школьники стараются найти решения для своих заданий в Интернете, поэтому часто возникают вопросы такого типа: найти разность арифметической прогрессии онлайн. По подобному запросу поисковик выдаст ряд web-страниц, перейдя на которые, нужно будет ввести известные из условия данные (это могут быть как два члена прогрессии, так и сумма некоторого их числа) и моментально получить ответ. Тем не менее такой подход к решению задачи является непродуктивным в плане развития школьника и понимания сути поставленной перед ним задачи.

Определение и примеры арифметической прогрессии

Это последовательность из чисел, где каждое последующее число ряда (начиная со второго) увеличивается или уменьшается на определенную сумму, являющуюся константой.

Кроме этого для описания используется ряд сопутствующих терминов и определений. Членом (аn) называется единичное число из последовательности.

Разностью (d) называется фиксированное число, на которое увеличивается или уменьшается последующее число прогрессии.

Кроме этого, существуют виды таких рядов:

  • возрастающая – числа ряда увеличиваются по своему значению,
  • убывающая – каждое последующее число ряда уменьшается.

В качестве примера представим последовательность чисел «3, 9, 15, 21, 27». Данный случай – этот ряд чисел попадает под характеристику арифметической прогрессии. Этот вывод делается в том случае, когда разница между членами ряда фиксирована и равняется 6.

Важные формулы арифметической прогрессии

Как видите, многие задачи по арифметической прогрессии можно решать, просто поняв главное – то, что арифметическая прогрессия есть цепочка чисел, и каждый следующий элемент в этой цепочке получается прибавлением к предыдущему одного и того же числа (разности прогрессии).

Однако порой встречаются ситуации, когда решать «в лоб» весьма неудобно. Например, представьте, что в самом первом примере нам нужно найти не пятый элемент \(b_5\), а триста восемьдесят шестой \(b_{386}\). Это что же, нам \(385\) раз прибавлять четверку? Или представьте, что в предпоследнем примере надо найти сумму первых семидесяти трех элементов. Считать замучаешься…

Поэтому в таких случаях «в лоб» не решают, а используют специальные формулы, выведенные для арифметической прогрессии. И главные из них это формула энного члена прогрессии и формула суммы \(n\) первых членов.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\),  где   \(a_1\) – первый член прогрессии;
                                                                                \(n\) – номер искомого элемента;
                                                                                \(d\) – разность прогрессии;  
                                                                                \(a_n\) – член прогрессии с номером \(n\).

Эта формула позволяет нам быстро найти хоть трехсотый, хоть миллионный элемент, зная только первый и разность прогрессии.

Пример. Арифметическая прогрессия задана условиями: \(b_1=-159\); \(d=8,2\). Найдите \(b_{246}\). Решение:

\(b_1=-159\); \(d=8,2\)
\(b_{246}=?\)

Больше двухсот раз прибавлять \(8,2\) к \(-159\) – перспектива не самая радужная. Лучше воспользуемся формулой, подставив вместо \(n\) номер искомого элемента.

\(n=246\); \(b_{246}=-159+(246-1)·8,2=\)
\(=-159+245·8,2=\)
\(=-159+2009=1850\)

Можно писать ответ.

Ответ:   \(b_{246}=1850\).

Формула суммы n первых членов: \(S_n=\frac{a_1+a_n}{2} \cdot n\), где 

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(a_n\) – последний суммируемый член;  
\(n\) – количество элементов в сумме.

Пример (ОГЭ).Арифметическая прогрессия задана условиями \(a_n=3,4n-0,6\). Найдите сумму первых \(25\) членов этой прогрессии.Решение:

\(S_{25}=\)\(\frac{a_1+a_{25}}{2 }\)\(\cdot 25\)

Чтобы вычислить сумму первых двадцати пяти элементов, нам нужно знать значение первого и двадцать пятого члена.
Наша прогрессия задана формулой энного члена в зависимости от его номера (подробнее смотри здесь). Давайте вычислим первый элемент, подставив вместо \(n\) единицу.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Теперь найдем двадцать пятый член, подставив вместо \(n\) двадцать пять.

\(n=25;\) \(a_{25}=3,4·25-0,6=84,4\)

Ну, а сейчас без проблем вычисляем искомую сумму.

\(S_{25}=\)\(\frac{a_1+a_{25}}{2}\)\(\cdot 25=\)
\(=\) \(\frac{2,8+84,4}{2}\)\(\cdot 25 =\)\(1090\)

Ответ готов.

Ответ:   \(S_{25}=1090\).

Для суммы \(n\) первых членов можно получить еще одну формулу: нужно просто в \(S_{25}=\)\(\frac{a_1+a_{25}}{2}\)\(\cdot 25\) вместо \(a_n\) подставить формулу для него \(a_n=a_1+(n-1)d\). Получим:

Формула суммы n первых членов: \(S_n=\)\(\frac{2a_1+(n-1)d}{2}\)\(\cdot n\), где 

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(d\) – разность прогрессии;
\(n\) – количество элементов в сумме.

Пример .Найдите сумму первых \(33\)-ех членов арифметической прогрессии: \(17\); \(15,5\); \(14\)…Решение:

\(S_{33}=\)\(\frac{2a_1+(33-1)d}{2}\)\(\cdot 33\)

Для решения задачи воспользуемся последней формулой. Первый элемент известен, нужно найти только разность прогрессии \(d\). Вычисляем ее как разность двух соседних элементов.

\(d=a_2-a_1=15,5-17=-1,5\)

Теперь можно посчитать сумму \(33\)-ех элементов.

\(S_{33}=\)\(\frac{2 \cdot 17+(33-1)(-1,5)}{2}\)\(\cdot 33=\)

Готово. Быстро и просто, почти как Доширак.  Но гораздо менее вредно.

\(=\)\(\frac{34-32·1,5}{2}\)\(\cdot 33\)\(=-231\)

Ответ готов.

Ответ:   \(S_{33}=-231\).

Понятие о прогрессии алгебраической

Числовая прогрессия представляет собой последовательность чисел, в которой каждый последующий элемент можно получить из предыдущего, если применить некоторый математический закон. Известно два простых вида прогрессии: геометрическая и арифметическая, которую называют также алгебраической. Остановимся на ней подробнее.

Представим себе некоторое рациональное число, обозначим его символом a1, где индекс указывает его порядковый номер в рассматриваемом ряду. Добавим к a1 некоторое другое число, обозначим его d. Тогда второй элемент ряда можно отразить следующим образом: a2 = a1+d. Теперь добавим d еще раз, получим: a3 = a2+d. Продолжая эту математическую операцию, можно получить целый ряд чисел, который будет называться прогрессией арифметической.

Как можно понять из изложенного выше, чтобы найти n-ый элемент этой последовательности, необходимо воспользоваться формулой: an = a1 + (n-1)*d. Действительно, подставляя n=1 в выражение, мы получим a1 = a1, если n = 2, тогда из формулы следует: a2 = a1 + 1*d, и так далее.

Например, если разность прогрессии арифметической равна 5, а a1 = 1, то это значит, что числовой ряд рассматриваемого типа имеет вид: 1, 6, 11, 16, 21, … Как видно, каждый его член больше предыдущего на 5.

Математическое определение

Итак, если речь идет о прогрессии арифметической или алгебраической (эти понятия определяют одно и то же), то это означает, что имеется некоторый числовой ряд, удовлетворяющий следующему закону: каждые два соседних числа в ряду отличаются на одно и то же значение. Математически это записывается так:

Здесь n означает номер элемента an в последовательности, а число d – это разность прогрессии (ее название следует из представленной формулы).

О чем говорит знание разности d? О том, как “далеко” друг от друга отстоят соседние числа. Однако знание d является необходимым, но не достаточным условием для определения (восстановления) всей прогрессии. Необходимо знать еще одно число, которым может быть совершенно любой элемент рассматриваемого ряда, например, a4, a10, но, как правило, используют первое число, то есть a1.

Как найти сумму?

Столь же часто на экзаменах можно встретить задания, смыслом которых является нахождение суммы определенной длины прогрессии, начиная с первого. Решение таких упражнений происходит с помощью формулы:

С помощью данной формулы, зная первые и последние цифры в необходимом диапазоне, можно узнать сумму всех пунктов числового ряда. А так как совершенно любой из пунктов можно столь же просто найти, получается, что для нахождения суммы абсолютно любой прогрессии нужно только знать первые 2 ее элемента.Задания на данную тему можно встретить как в Основном государственном экзамене (ОГЭ), так и в Едином государственном экзамен (ЕГЭ). Чтобы не потерять драгоценные баллы, не лишним будет повторное изучение материала и решение нескольких типовых заданий, связанных с числовыми рядами.Больше наглядных примеров решений по этой теме смотрите в предложенном видео.

Формулы арифметической прогрессии

Одно из важнейших свойств заключается в возможности вычисления любого числа конкретного места ряда.

Чтобы решать это, необходима формула, показывающая, как находится член арифметической прогрессии. В общем виде она будет выглядеть, как значение предыдущего числа в ряду (an-1), к которому прибавляют разность (d):

Также может возникнуть задача, когда надо просуммировать все числа ряда арифметической прогрессии (сумма членов). Если их малое количество, то можно посчитать это вручную, но если количество чисел перевалит за сотню, то проще будет воспользоваться специальной формулой для обработки.

Итак, нам понадобится значение первого числа в ряду (a1) и последнего (an), а также информация об общем количестве чисел в ряду. Рекуррентная формула, показывающая, как искать сумму, будет выглядеть в таком случае следующим образом:

Обратите внимание: под значением n подразумевается именно количество членов ряда, для которых производится нахождение суммы. Произведение членов арифметической прогрессии можно находить по похожей формуле:

Произведение членов арифметической прогрессии можно находить по похожей формуле:

где, Pn – произведение, b1 и bn – соответственно первое и последнее числа, а n – количество членов.

Отдельно следует коснуться такого понятия, как характеристическое свойство прогрессии. Оно сводится к выполнению определенного условия для каждого элемента:

Геометрическая прогрессия.

Геометрическая прогрессия — это последовательность чисел  (членов прогрессии), в которой каждое число, начиная со 2-го, получают из предыдущего путем умножения его на определённое число  (знаменатель прогрессии), где , : .

Или другими словами: геометрическая прогрессия – это численная последовательность, каждое из чисел равняется предыдущему, умноженному на определенное постоянное число q для данной прогрессии, которое называется знаменателем геометрической прогрессии.

Каждый член геометрической прогрессии можно вычислить при помощи формулы:

Когда  и , значит, прогрессия возрастает , когда , значит, прогрессия убывает, а при  — знакочередуется.

Название геометрическая прогрессия взяла из своего характеристического свойства:

т.е. все члены равны среднему геометрическому их соседей.

Перекрестки

Пересечение любых двух бесконечных дважды арифметических прогрессий либо пусто или другой арифметической прогрессии, которая может быть найдена с помощью теоремы китайского остатка . Если каждая пара прогрессий в семействе дважды бесконечных арифметических прогрессий имеет непустое пересечение, то существует общее для всех них число; то есть бесконечные арифметические прогрессии образуют семью Хелли . Однако пересечение бесконечного множества бесконечных арифметических прогрессий может быть одним числом, а не бесконечной прогрессией.

Еще тесты

  • Анатомия
  • Английский язык
  • Астрономия
  • Биология
  • Литература
  • История
  • Педсовет
  • Естествознание
  • Финансы и кредит
  • Правоведение
  • Товароведение
  • Экономика
  • Социология
  • Маркетинг
  • Обществознание
  • Культурология
  • Математика
  • Философия
  • Русский язык
  • Психология
  • Политология
  • Делопроизводство
  • Бухгалтерия
  • ОБЖ
  • Орфография
  • География
  • Биографии
  • Физика
  • Пунктуация
  • Краткие содержания
  • Химия
  • Менеджмент
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Идеи обучения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: