Проект «Проводник или изолятор»
Электрический ток возникает только тогда, когда для него создан непрерывный путь, по которому он может протекать. Множество материалов могут использоваться для замыкания цепи и создания потока. Такие материалы называются проводниками электричества. Большинство металлов, включая алюминий, считаются хорошими проводниками. Материалы, не проводящие электрический ток, называются изоляторами. Большинство предметов, сделанных из пластика и резины, являются изоляторами
Важно понимать разницу между проводниками и изоляторами не только для создания цепей, но и для строительства домов и приготовления пищи, не говоря уже о безопасности
Определите, какие предметы домашнего обихода хорошо проводят электричество.
Цель – продемонстрировать понимание простых замкнутых цепей и оценить проводимость обычных бытовых предметов.
Что нам понадобится:
- четыре фрагмента изолированного провода (желательно с зажимами на концах);
- батарейка D;
- маленькая лампочка;
- бытовые предметы для испытания: скрепка, зубочистка, фольга, банан, жестяная банка, монета и др.;
- держатель для лампочки (опционально);
- держатель для батарейки (опционально).
Ход эксперимента:
- Соберите простую замкнутую цепь, соединив батарейку и лампочку двумя проводами. Пример можно увидеть на графике.
- Если вы не используете держатели, то провода необходимо расположить так, чтобы один из них соединял плюс батарейки и контакт на нижней части лампочки, а другой – минус батарейки и контакт на боковой части цоколя. Для фиксации контактов используется изолента. Если цепь замкнута, лампочка должна загореться.
- Соберите хотя бы 10-14 бытовых предметов для опыта. Выбирайте предметы из разных материалов: металла, пластика, дерева.
- Включите один предмет в цепь, чтобы проверить, проводник это или изолятор. Сначала отключите один зажим от лампочки и присоедините его к предмету. Соедините другим проводом этот предмет и лампочку. Если она загорится, предмет является проводником электричества, если же нет – изолятором.
- Следующая таблица может служить примером того, как можно записать результаты опытов.
Бытовой предмет | Проводник | Изолятор |
Скрепка | X | |
Деревянная ложка | X | |
Монета | ||
Резиновая лопатка |
Вывод:
Как создать простую замкнутую цепь? Как электричество протекает через цепь? Какие бывают проводники? Какие бывают изоляторы? Как работают проводники и изоляторы в доме, чтобы защитить от удара током?
Проект «Сопротивление: медь – лучший проводник?»
Сопротивление – это совокупность препятствий для потока электронов. Обозначается буквой R. Оно зависит от длины и толщины проводника, а также от материала, из которого он сделан, поэтому значение может различаться для разных его участков. Измеряется оно в омах (Ом). Постоянное свойство конкретного материала оказывать сопротивление называется сопротивляемостью, обозначаемой греческой буквой ρ (ро) и измеряемой в ом-метрах (Ом-м).
Формула для вычисления сопротивления данного отрезка провода выглядит так:
R = ρL/S,
где R обозначает сопротивление в омах, L – длину провода в метрах, S – площадь его сечения в квадратных метрах, а ρ – удельное сопротивление проводника в ом-метрах.
Электрическая проводимость – величина, обратная сопротивляемости. Она показывает, как свободно материал позволяет протекать электричеству. Обозначается она G и измеряется в сименсах (Cм). См=Ом-1.
G= σ S/L,
где σ — удельная проводимость.
Удельная проводимость обратно пропорциональна удельному сопротивлению ρ.
σ = 1/ρ.
В данном эксперименте вы сможете вычислить сопротивляемость и проводимость тестируемых материалов, используя закон Ома, согласно которому напряжение определяется как произведение силы тока на сопротивление. Измерить силу тока вам поможет амперметр, а напряжение – вольтметр.
V=IR,
где V – напряжение в вольтах, I – сила тока в амперах, а R – сопротивление в омах.
Цель – выяснить сопротивляемость различных материалов, а также вычислить их проводимость.
Что нам понадобится:
- батарейка 9 вольт;
- по 30 см тонкого и толстого медного провода без изоляции;
- по 30 см тонкого и толстого железного провода без изоляции (с такими же диаметрами);
- провода из других материалов;
- кусачки;
- амперметр;
- вольтметр;
- линейка.
Ход эксперимента:
Соблюдайте меры безопасности при работе с электричеством.
- Присоедините плюс амперметра к минусу батарейки 9 вольт.
- Присоедините минус амперметра к концу одного из проводов.
- Присоедините его другой конец к плюсу батареи 9 вольт.
- Используйте вольтметр, чтобы выяснить напряжение на участках провода разной длины (начните с 2 см, затем измерьте для 3 см, 4 см и так далее). Следите, чтобы плюс вольтметра касался начала провода.
- Запишите величину силы тока (с амперметра) и напряжения (с вольтметра) для каждой длины.
- Воспользуйтесь законом Ома, чтобы определить сопротивление, а также понять, как длина, толщина и материал влияют на него.
- Отобразите результаты с помощью графика. Длину провода в метрах отложите по оси x, а сопротивление в омах – по оси y.
- Вычислите сопротивляемость с помощью формулы: R = ρL/S,
- Здесь R – сопротивление в омах,
- ρ – удельное сопротивление в ом-метрах,
- L – длина провода в метрах,
- S – площадь его сечения в метрах квадратных.
- Используйте значение удельного сопротивления проводника ρ чтобы вычислить удельную проводимость σ и проводимость G.
Вывод:
Какой материал обладает большей сопротивляемостью? Проводимостью? Сформулируйте гипотезу, какая существует зависимость сопротивления от температуры.
Чем тоньше провод, тем меньше его сопротивление. У меди – сопротивляемость ниже, поэтому она считается более подходящим проводником электричества по сравнению с железом. Почему? Сопротивление провода тем выше, чем он длиннее. Поскольку оно является характеристикой материала, через который протекают электроны, вполне логично, что чем больше задействованного материала (в длину), тем больше получится сопротивление. Сопротивляемость – постоянная величина для конкретного материала, поэтому сопротивление прямо зависит от сечения. На графике этой зависимости наклон кривой демонстрирует именно сопротивляемость.
Итак, медь лучше проводит электричество, чем железо? Да, поскольку электричество может протекать через нее с меньшим сопротивлением. Это является постоянным свойством меди.
Вычислите сопротивление определенного участка провода с помощью закона Ома, так как элементы цепи соединены последовательно, а сила тока одинакова на любом ее участке.
Диэлектрическая поляризация
Основы атомной модели
Электрическое поле взаимодействия с атомом в классической модели диэлектрической проницаемости.
Классический подход к диэлектрической модели, материала состоит из атомов. Каждый атом состоит из облака отрицательного заряда (электронов), привязанных к и окружающим положительный точечный заряд облаком отрицательного заряда (электронами) в центре. В присутствии электрического поля заряда облако искажается, как показано в правой верхней части фигуры.
Это может быть сведен к простой диполи , используя принцип суперпозиции . Диполь характеризуется дипольным моментом , векторная величина, показанная на рисунке синяя стрелка с надписью M. Это связь между электрическим полем и дипольным моментом, что порождает поведение диэлектрика
(Обратите внимание, что дипольный момент пунктов в том же направлении, что и электрическое поле на рисунке. Это не всегда так, и это сильное упрощение, но это справедливо для многих материалов.)
Когда электрическое поле удаляется атом возвращается в исходное состояние. Время, необходимое для этого является так называемая релаксация времени; экспоненциального распада.
В этом и заключается суть модели в физике. Поведение диэлектрическое теперь зависит от ситуации. Чем сложнее ситуация, тем богаче модель должна быть точно описана поведением. Важные вопросы:
- Создается электрическое поле, постоянное или оно меняется со временем? По какой ставке?
- Не ответ зависит от направления приложенного поля (изотропность материала)?
- Ответ везде одинаковый (однородность материала)?
- Делать каких-либо границ или интерфейсы должны быть учтены?
- Это отклик линейноcти систем относительно поля, или есть нелинейности систем ?
Связь между электрическим полем E и дипольным моментом M порождает поведение диэлектрической проницаемости, которая для данного материала, может быть охарактеризована функцией F и определяется уравнением:
- .
Когда оба типа электрического поля и тип материала были определены, затем выбирается одна простейшая функция F , которая правильно предсказывает явления интересов. Примеры явлений, которые так можно смоделировать включают в себя:
- Показатель преломления
- Дисперсии групповых скоростей
- Двойное лучепреломление
- Самофокусировка
- Генерация гармоник
Пробой диэлектрика
Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?
Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.
Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.
Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит
Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:
- тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
- электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.
Помещаем в постоянное поле
Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.
Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:
- смещать связанные заряды (это только электроны и ионы)
- накладывать на беспорядочное движение тепла поля, которое будет это движение упорядочивать (положительные заряды будут идти в одну сторону с полем, а отрицательные — в обратную)
Что будет давать упорядоченное перемещение
При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:
- новое равновесное состояние с другим распределением зарядов, причем движение сразу прекращается при достижении равновесия
- пока поле будет действовать, упорядочивание может длится, пока в нем еще останутся свободные электроны или свободные ионы, о которых мы поговорили выше
Электропроводность древесины.
Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. 22 приведены некоторые данные.
Таблица 22. Сравнительные данные об удельном объемном и поверхностном сопротивлении древесины.
Порода и направление | Влажность, % | Удельное объемное сопротивление, ом х см | Удельное поверхностное сопротивление, ом |
Береза, вдоль волокон | 8,2 | 4,2 х 1010 | 4,0 х 1011 |
Береза, поперек волокон | 8,0 | 8,6 х 1011 | 2,8 х 1012 |
Бук, вдоль волокон | 9,2 | 1,7 х 109 | 9,4 х 1010 |
Бук, поперек волокон | 8,3 | 1,4 х 1010 | 7,9 х 1010 |
Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл. 24.
Таблица 23. Удельное объемное сопротивление древесины в абсолютно сухом состоянии.
Порода | Удельное объемное сопротивление, ом х см | |
поперек волокон | вдоль волокон | |
Сосна | 2,3 х 1015 | 1,8 х 1015 |
Ель | 7,6 х 1016 | 3,8 х 1016 |
Ясень | 3,3 х 1016 | 3,8 х 1015 |
Граб | 8,0 х 1016 | 1,3 х 1015 |
Клен | 6,6 х 1017 | 3,3 х 1017 |
Береза | 5,1 х 1016 | 2,3 х 1016 |
Ольха | 1,0 х 1017 | 9,6 х 1015 |
Липа | 1,5 х 1016 | 6,4 х 1015 |
Осина | 1,7 х 1016 | 8,0 х 1015 |
Таблица 24. Влияние влажности на электрическое сопротивление древесины.
Порода | Удельное объемное сопротивление (ом х см) поперек волокон при влажности древесины (%) | ||
22 | 100 | ||
Кедр | 2,5 х 1014 | 2,7 х 106 | 1,8 х 105 |
Лиственница | 8,6 х 1013 | 6,6 х 106 | 2,0 х 105 |
Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22—23° до 44—45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20—21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 107 ом см, а при охлаждении до температуры —24° С оно оказалось равным 1,02 х 108 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.
www.drevesinas.ru
Электроскоп помогает изучать свойства электрических зарядов
Первое устройство, с помощью которого появилась возможность наблюдать и количественно оценивать электризацию тел, придумал и изготовил в 1600 г. английский исследователь Уильям Гилберт. Этот прибор был назван электроскопом. Название получилось от комбинации двух греческих слов: янтарь (электрон) и обнаруживать (скопео). Следующие поколения ученых улучшили конструкцию электроскопа, но основные черты, заложенные Гилбертом, остались прежними.
Рис. 1. Как устроен электроскоп
Электроскоп представляет собой простой, наглядный прибор. Основная идея работы его конструкции основана на свойстве отталкивания тел, заряженных одноименными зарядами. На одном из концов металлического прутка (стержня) закреплены две полоски тонкой бумаги или металла (фольги). Если к противоположному концу поднести заряженный предмет (расческу, палочку из эбонита), то полоски, оттолкнувшись друг от друга, образуют перевернутую римскую цифру V.
Заряды с предмета перетекают по металлическому прутку на полоски, которые получив одноименный заряд, отталкиваются друг от друга, что позволяет экспериментатору видеть наличие зарядов в электроскопе. Полоски помещают внутрь стеклянного, прозрачного сосуда (колпака), чтобы случайные потоки воздуха не влияли на наблюдения. Стержень вставляется в колпак через резиновую пробку.
Проект «Какие вещества проводят электричество при растворении в воде»
Электрический поток – результат движения электрически заряженных частиц(электричества) под действием сил приложенного к ним электрического поля. Чистая вода плохо проводит электричество, но некоторые элементы, растворенные в ней, позволяют ей проводить ток. Такие вещества при растворении образуют ионы (заряженные частицы), которые переносят заряд внутри раствора. Растворы, обладающие этим свойством, называются электролитами. Чем больше ионов в растворе, тем выше его проводимость. Неэлектролиты – растворы, не содержащие ионы и не проводящие ток. Электролиты могут быть слабыми или сильными. Это зависит от того, как они ионизируются: полностью или частично.
Проводимость раствора можно измерить при помощи устройства проводимости, состоящего из двух металлических электродов, обычно располагаемых на расстоянии 1 см (именно поэтому она измеряется в микросименсах или миллисименсах на сантиметр). На оба электрода подается постоянное напряжение. Это вызывает электрический ток в растворе. Поскольку он пропорционален количеству ионов в воде, проводимость можно измерить. Чем выше концентрация ионов, тем выше проводимость образца.
Устройство проводимости обычно используется в гидропонике, бассейнах, а также системах очистки воды для отслеживания количества питательных веществ, солей или загрязнений.
Раствор некоторых веществ в воде проводит электричество. Эти вещества при растворении образуют ионы, и эти ионы переносят заряд через раствор. Этот проект направлен на то, чтобы собрать устройство для выявления того, раствор каких веществ может проводить электричество, а каких – нет.
В фокусе этого проекта – создание устройства, которое позволило бы определить, какие вещества, будучи растворенными, могут проводить электричество – и каким типом электролита они в этом случае являются.
Что нам понадобится:
- устройство проводимости;
- пластиковые стаканчики;
- большие скрепки;
- изолента;
- разные виды воды: дистиллированная, минеральная, газированная;
- уксус;
- сахар;
- соль.
Ход эксперимента:
- Эксперименты с электричеством в домашних условиях требуют внимательности. Не глотайте вещества, используемые в этом опыте!
- Приготовьте разные виды воды.
- Приготовьте растворы соли и сахара, растворив их в дистиллированной воде.
- Налейте жидкость в стаканчик.
- Разогните скрепки, закрепив их изолентой на противоположных сторонах стаканчика.
- Не помещайте контакты прямо в раствор, иначе со временем они заржавеют. Вместо этого поместите их на скрепки, а скрепки опустите в раствор.
- Результаты наблюдений отобразите в таблице и в виде графика. В зависимости от того, какое устройство проводимости вы используете, отметьте, горят ли LED-лампы и степень их яркости. Ополаскивайте стаканчик и скрепки дистиллированной водой между опытами.
- Если неподалеку есть источник, проверьте воду из него на проводимость. Если она проводит электричество, подумайте, какие вещества могли быть в нем растворены и откуда они могли взяться.
- Отметьте галочкой поле, соответствующее свету, производимому LED-лампой. В зависимости от яркости лампы распределите жидкости на сильные, средние, слабые электролиты или неэлектролиты.
Интенсивность света/ жидкость | Яркий | Средней яркости | Слабый | Нет света | Тип электролита |
Дистиллированная | |||||
Из-под крана | |||||
Минеральная | |||||
Дождевая | |||||
Раствор соли | |||||
Раствор сахара | |||||
Газированная | |||||
Уксус |
Вывод:
Что такое электричество? Что такое электролит? Что такое проводимость? Какие вещества оказались хорошими электролитами по результатам опыта? Посмотрите на этикетку бутылки минеральной воды. Как вы думаете, какие вещества в ее составе помогают проводить ток? Посмотрите на этикетку бутылки газированной воды. Как вы думаете, какие вещества в ее составе помогают проводить электричество? Жидкая паста внутри батареек для фонарика – электролит. Какие из протестированных веществ могли бы использоваться в качестве такого электролита? Подумайте, какие еще опыты с электричеством в домашних условиях можно провести на основе проведенного проекта.
Files — стильный и современный
- Стоимость: бесплатно.
- Только для Windows 10.
Пожалуй, последним и самым красивым файловым менеджером для Windows станет Files. Это современное UWP-приложение, которое умеет всё то, что может стандартный «Проводник», но в совершенно новом обличии. Продукт всё ещё сыроват, но попробовать однозначно стоит — утилита часто обновляется, а также имеет открытый исходный код. Подробнее о ней вы можете почитать здесь.
Плюсы:
- Современный и красивый внешний вид.
- Поддержка ARM процессоров.
- Вкладки.
- Поддержка плагинов (вроде QuickLook).
Минусы:
- Редкие вылеты.
- Отсутствие встроенного архиватора.
Проект «Последовательное и параллельное соединение батареек»
Вольт – стандартная единица измерения напряжения электричества. Ампер – стандартная единица измерения силы тока. Последовательное – один за другим, как звенья в цепочке. Параллельное – рядом друг с другом, как рельсы.
Электричеством называется движение электронов в проводнике, а напряжение можно сравнить с давлением, например, текущей воды на трубу. Сила тока показывает количество электронов, что-то вроде объема воды, вытекающей из трубы. Батарейки производят электричество путем химической реакции. Они могут быть соединены в линию, чтобы повысить напряжение, или параллельно, чтобы увеличить силу тока. Чтобы увеличить оба показателя, можно комбинировать эти виды соединения.
Схема последовательного соединения предполагает соединение плюса каждой батарейки с минусом следующей. Две батарейки на 6 вольт и 2 ампера, соединенные таким образом, дадут 12 вольт и 2 ампера в цепи.
Схема параллельного соединения предполагает соединения плюсов с плюсами, а минусы с минусами. Две батарейки на 6 вольт и 2 ампера, соединенные таким образом, дадут 6 вольт и 4 ампера в цепи.
Смешанное соединение позволяет объединить оба типа соединения, чтобы получить любое желаемое значение напряжения и силы тока. Так, напряжение 120 вольт можно получить, последовательно соединив 20 батарей на 6 вольт. Если же при этом необходима сила тока 50 ампер, а каждая батарейка дает 1 ампер, то общая схема подключения будет выглядеть как 25 подобных цепей, соединенных параллельно.
Одна батарейка дает небольшое напряжение и силу тока. Соединяя их последовательно, можно увеличить эти показатели. Даже простая батарейка на 9 вольт представляет собой набор батареек. Данный проект показывает, как объединение батареек по разным схемам может быть использовано для достижения самых разных величин напряжения и силы тока.
Для детей такой проект может быть очень познавательным, так как он на практике показывает, как работает электричество. Например, четыре батарейки могут быть использованы для выдачи напряжения 6 вольт. Ученики могут показать собственные схемы проведения электричества.
Цель – продемонстрировать, как несколько батареек могут использоваться для увеличения напряжения и/или силы тока в цепи.
Что нам понадобится:
- несколько батареек, которые будут соединяться последовательно и/или параллельно;
- держатели для них или проволока и припой;
- вольтметр, способный также измерять силу тока;
- опционально – разобранная батарейка.
Ход эксперимента:
Обратите внимание на то, что каждая исследовательская работа на тему электричества требует соблюдения техники безопасности. Существует небольшой риск превышения уровня допустимого напряжения/силы тока, что может привести к перегреву всей конструкции
Припаивание контактов делает опыт нагляднее, однако несет риск ожогов. При разборе сухой батарейки существует риск контакта с электролитом.
Определитесь с тем, что вы будете использовать: держатель для батареек или припой.
Соберите последовательную цепь, измерьте напряжение и силу тока.
Соберите параллельную цепь, измерьте напряжение и силу тока.
Соберите цепь, комбинирующую оба типа соединения. Измерьте те же показатели.
Опционально – разберите батарейку, покажите ее содержимое. Необходимо наблюдение взрослого, поскольку содержащийся в ней электролит едок.
Вывод:
Что такое электричество? Что такое элемент питания? Что такое последовательная цепь? Что такое параллельная схема подключения? Батарейка 9 вольт содержит один элемент питания или несколько? Почему? В чем разница между переменным и постоянным током?
Примечания
- Quote from Encyclopædia Britannica: «Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.»
- Quote from Encyclopædia Britannica: «Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.»
- Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: «Dielectrics… are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic, or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids, and with the storage of electric and magnetic energy as well as its dissipation.» (Technology Press of MIT and John Wiley, NY, 1954).
Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»
Что такое хлорид натрия
Хлорид натрия или столовая соль представляет собой вещество, химическая формула которого — NaCl. В природе хлорид натрия присутствует в форме минерала галита. В твердом состоянии NaCl представляет собой ионный кристалл, образованный анионами Cl- и катионами Na+, которые находятся в узлах кристаллической решетки. Каждый ион в решетке окружен шестью ионами, имеющими противоположный знак и расположенными в вершинах октаэдра.
У хлорида натрия кристаллическая решетка является сложной. Ее можно представить как две гранецентрированные кубические решетки (одна образована катионами Na+, а другая анионами Cl-), вставленные друг в друга.
Для понимания ответа на вопрос о том, почему раствор сахара электрический ток не проводит, а раствор хлорида натрия проводит, также важно знать, что поваренная соль отлично растворяется в воде
Диэлектрики
В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.
Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.
Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.
Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.
Как известно, электрическим током называется упорядоченное движение носителей электрического заряда. Такими носителями заряда могут выступать электроны — в металлах, в полупроводниках и в газах; ионы — в электролитах и в газах; а в полупроводниках носителями электрического заряда выступают еще и дырки — незаполненные валентные связи в атомах, равные по модулю заряду электрона, но имеющие положительный заряд.
Задаваясь вопросом о том, какие же вещества проводят электрический ток, нам придется порассуждать о том, благодаря чему в первую очередь возникает ток, а именно — о наличии в тех или иных веществах заряженных частиц. Ток смещения рассматривать здесь не будем, поскольку он не является током проводимости, и поэтому не относится напрямую к данному вопросу.
По праву главными проводниками электрического тока во всей современной электротехнике выступают металлы. Для металлов характерна слабая связь валентных электронов, то есть электронов внешних энергетических уровней атомов, с ядрами этих атомов.
И как раз благодаря слабости данных связей, при возникновении по какой-нибудь причине в проводнике разности потенциалов (вихревое электрическое поле или приложенное напряжение), электроны эти начинают лавинообразно перемещаться в ту или иную сторону, возникает движение электронов проводимости внутри кристаллической решетки, словно движение «электронного газа».
Характерные представители металлических проводников: медь, алюминий, вольфрам.
Далее по списку — полупроводники. Полупроводники, по способности проводить электрический ток, занимают промежуточное положение между проводниками вроде медных проводов и диэлектриками вроде оргстекла. Здесь один электрон связан сразу с двумя атомами — атомы находятся в ковалентных связях друг с другом — поэтому для того чтобы каждый отдельно рассматриваемый электрон начал двигаться создавая ток, ему сначала необходимо получить энергию для реализации возможности покинуть свой атом.
Примеры применения
Конструктивные элементы для удержания нагревательных элементов в фенах, калориферах, тепловентиляторах, паяльниках и т.д.
Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условияхмеханических нагрузок.
Как защитное окошко выхода микроволнового излучения от магнетрона в микроволновках. (обычно попадая на слюду еда обугливается, и становясь проводником, начинает бурно искрить, от чего владельцы микроволновки со страху микроволновку выбрасывают, хотя достаточно вырезать пластинку из листа слюды и заменить окошко.)
Слюдяное окошко в микроволновке. Иногда встречаются пластиковые, но только у моделей без гриля.
Благодаря тому, что тонкие пластинки слюды не пропускают газы, но пропускают энергичные заряженные частицы — слюдяные окошки используются в конструкциях счетчиков альфа и бета частиц.
Используется в конструкциях радиоламп — удерживает электроды на своих местах.
Восьмигранная пластинка изготовлена из слюды.
Используется как материал слюдяных конденсаторов. Слюда выступает диэлектриком, а электродами — проводящее напыление металла на пластинках слюды. Данный вид конденсаторов встречается всё реже и реже, вытесненный конденсаторами на базе полимерных пленок. Слюдяные конденсаторы могут работать при высокой температуре.
Слюдяные конденсаторы производства СССР полувековой давности.
Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.
До появления и широкого распространения теплопроводящих изолирующих прокладок из полимерных материалов, вроде Номакон, слюдяные пластинки использовались для электрической изоляции компонентов при сохранении теплового контакта, например, когда необходимо на один радиатор закрепить несколько транзисторов, корпуса которых под разными напряжениями.
Пластинки природной щипаной слюды.
Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.