Геометрическая фигура: треугольник

Формулы площади геометрических фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

  1. Формула площади треугольника по стороне и высоте Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам

    S = √p(p — a)(p — b)(p — c)

  3. Формула площади треугольника по двум сторонам и углу между ними Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. где S — площадь треугольника, a, b, c — длины сторон треугольника, h — высота треугольника, γ — угол между сторонами a и b, r — радиус вписанной окружности, R — радиус описанной окружности,
    p =  a + b + c   — полупериметр треугольника.
    2

  1. Формула площади параллелограмма по длине стороны и высоте Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними. где S — Площадь параллелограмма, a, b — длины сторон параллелограмма, h — длина высоты параллелограмма, d1, d2 — длины диагоналей параллелограмма, α — угол между сторонами параллелограмма, γ — угол между диагоналями параллелограмма.

  1. Формула площади ромба по длине стороны и высоте Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей Площадь ромба равна половине произведению длин его диагоналей. где S — Площадь ромба, a — длина стороны ромба, h — длина высоты ромба, α — угол между сторонами ромба, d1, d2 — длины диагоналей.

  1. Формула Герона для трапеции
    S =  a + b √(p-a)(p-b)(p-a-c)(p-a-d)
    |a — b|
  2. Формула площади трапеции по длине основ и высоте Площадь трапеции равна произведению полусуммы ее оснований на высоту где S — площадь трапеции, a, b — длины основ трапеции, c, d — длины боковых сторон трапеции,
    p =  a + b + c + d   — полупериметр трапеции.
    2
  1. Формула площади четырехугольника по длине диагоналей и углу между ними Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними: где S — площадь четырехугольника, d1, d2 — длины диагоналей четырехугольника, α — угол между диагоналями четырехугольника.
  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности) Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ

    где S — площадь четырехугольника,

    • a, b, c, d — длины сторон четырехугольника,
    • p = a + b + c + d2  — полупериметр четырехугольника,
    • θ = α + β2  — полусумма двух противоположных углов четырехугольника.
  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p — a)(p — b)(p — c)(p — d)

  1. Формула площади круга через радиус Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр Площадь круга равна четверти произведения квадрата диаметра на число пи. где S — Площадь круга, r — длина радиуса круга, d — длина диаметра круга.

2011-2020 Довжик МихаилКопирование материалов запрещено.

Добро пожаловать на OnlineMSchool. Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне [email protected]

Нахождение высоты прямоугольного треугольника через его катеты

Прямоугольным считается треугольник, у которого один из углов является прямым, то есть равным 90°. Высота, опущенная из такого угла, падает на гипотенузу треугольника и делит его на два прямоугольных треугольника, которые пропорциональны по отношению к большому треугольнику и друг к другу.

Важно отметить, что две другие высоты будут совпадать с катетами треугольника. Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c)

Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c).

Причем гипотенуза также легко находится через катеты по теореме Пифагора:

c² = a² + b²

Расчет высоты идет следующим образом:

Материал 7 класса

В равнобедренном треугольнике углы при основании равны, а биссектриса, проведенная к основанию, является медианой и высотой.

Если в треугольнике два угла равны, то он равнобедренный.

Из любой точки окружности ее диаметр, не выходящий из этой точки, виден под прямым углом.

Внешний угол треугольника

Внешний угол треугольника — угол, образованный стороной треугольника и продолжением его другой стороны.

При каждой вершине треугольника имеются два внешних угла.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.

Откуда в математике могли появиться внешние углы. Когда европейцы увидели пирамиды древнего Египта, они были потрясены увиденным. Им захотелось измерить эти грандиозные сооружения. Вот только внутренний угол пирамиды измерить не представляется возможным. Можно измерить внешний угол и высчитать внутренний.

Внутренняя область треугольника ABC — общая часть внутренних областей трех углов А, В и С этого треугольника.

Признаки равенства треугольников

  1. СУС — Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
  2. УСУ — Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
  3. ССС — по трем сторонам (= это означает, что треугольник жесткая фигура — стороны определяют углы)

Дополнительные признаки

  • СМС — Два треугольника равны, если две стороны и медиана, проведенная из общей вершины этих сторон, одного треугольника соответственно равны двум сторонам и медиане, проведенной из общей вершины этих сторон, другого треугольника.
  • По медиане и двум углам, на которые она делит угол треугольника
  • МСМ — Если сторона и две медианы, проведенные к двум другим сторонам, одного треугольника соответственно равны стороне и двум медианам другого треугольника, то такие треугольники равны.
  • СБС — Ели две стороны и биссектриса, заключенная между ними, одного треугольника соответственно равны двум сторонам и биссектрисе другого треугольника, то такие треугольники равны.
  • МММ — Два треугольника равны, если три медианы одного треугольника соответственно равны трем медианам другого треугольника.
  • ВВВ — Два треугольника равны, если три высоты одного треугольника соответственно равны трем высотам другого треугольника.
  • БББ — По трем биссектрисам
  • ССУб — Если две стороны одного треугольника соответственно равны двум сторонам другого, и угол одного треугольника, лежащий против большей из сторон, равен соответствующему углу другого, то такие треугольники равны.

Треугольник — жесткая фигура

Жесткая фигура — это фигура, не подверженная деформации.

Соединив дощечки с помощью гвоздей в четырехугольник, можно изменять градусную меру углов    четырехугольника, не меняя длины его сторон.

Можно менять величины углов у пятиугольников, шестиугольников и многоугольников с большим количеством сторон.

С треугольником так поступить не удастся.  Стороны треугольника определяют его углы однозначно. Треугольник не подвержен деформации. Поэтому треугольник — жесткая фигура. Из всех многоугольников только треугольник является жесткой фигурой.

Это свойство треугольника используется, в частности, при создании железных ажурных конструкций. Мосты, башни, подъемные краны, каркасы зданий, опоры для высоковольтных линий электропередач изготавливают таким образом, чтобы они содержали как можно больше треугольных элементов.

Средняя линия треугольника

Средняя линия треугольника — отрезок, соединяющий середины двух сторон этого треугольника.

При проведении всех трёх средних линий образуются 4 равных треугольника, подобных исходному с коэффициентом 1/2. Центральный из этих 4 одинаковых треугольников называется дополнительным треугольником. Медианы и центр тяжести данного треугольника ABC совпадают с медианами и центром тяжести дополнительного треугольника A’B’C’.

Средняя линия отсекает треугольник, который подобен данному, а его площадь равна одной четверти площади исходного треугольника.

См. также

  • Треугольник и окружность

  • Неравенство треугольника

Что такое высота

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Обобщения

Полигоны

Четырехугольник с диагоналями.

Поскольку треугольник является трехсторонним многоугольником, некоторые свойства обобщаются для большего числа сторон, например треугольное неравенство или сумма углов (для непересеченного многоугольника), но площадь и углы больше не зависят только от длины стороны. Также меньше общепринятых результатов по линиям или примечательным точкам. Однако определенные условия позволяют находить их как в случае частных четырехугольников (в частности, параллелограммов) или вписываемых в круг.

В большем измерении

Тетраэдр.

В пространстве три точки всегда копланарны, и поэтому их недостаточно для определения элемента объема . Но четыре некомпланарных точки образуют тетраэдр . В более общем смысле симплекс — это выпуклая геометрическая фигура, порожденная n точками в пространстве с как минимум n −1 измерениями .

Отношения

Изометрические треугольники

Два треугольника называются изометричными , накладываемыми друг на друга или, ранее, равными , если они имеют одинаковую длину сторон. В этом случае можно сделать так, чтобы вершины одного соответствовали вершинам другого с помощью изометрии (например, сдвига , поворота или симметрии ), и это соответствие затем соединяет углы одной и той же меры. Следовательно, эти треугольники также имеют одинаковую площадь.

Это первое определение эквивалентно каждому из следующих трех:

  • три длины сторон первого треугольника такие же, как и у второго (сокращенно CCC);
  • два треугольника имеют угол одинакового измерения между двумя сторонами одинаковой длины (сокращенно CAC);
  • два треугольника имеют стороны одинаковой длины между двумя углами одинаковых размеров (сокращенно ACA).

Подобные треугольники

Два треугольника с одинаковыми углами называются подобными . Они не обязательно изометричны, но их длины сторон пропорциональны с тем же коэффициентом пропорциональности k . Тогда их площади связаны коэффициентом k 2 .

Действительно, есть сходство (которое представляет собой соединение изометрии и гомотетии), которое превращает одно в другое. Это определение эквивалентно:

три угла первого имеют те же размеры, что и размеры второго (сокращенно ААА) (на самом деле двух углов достаточно: третий выводится из него)

или в:

три длины сторон первого пропорциональны сторонам второго.

Два изометрических треугольника всегда одинаковы. Также два равносторонних треугольника (не обязательно изометрических).

Высота треугольника по трем сторонам

Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):

где \( \small a, \ b, \ c \) стороны треугольника а полупериод \( \small p \) вычисляется из формулы:

Высота треугольника, отпущенная на сторону \( \small a\) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:

Пример 2. Известны стороны треугольника: \( \small a=5, \) \( \small b= 4, \) \( \small c=7. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)

Решение: Найдем, сначала полупериод \( \small p \) треугольника из формулы (3):

Ответ:

Третий признак равенства треугольников

Теорема 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то эти треугольники равны.

Доказательство. Рассмотрим треугольники ABC и A1B1С1. Пусть AB=A1B1, AC=A1C1 и BC=B1C1. Докажем, что . Приложим треугольник ABC к треугольнику A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, вершина B совмещалась с вершиной B1, а вершины С и С1 находились по разные стороны от прямой A1B1.

Возможны три варианта: луч CC1 проходит внутри угла ACB(Рис.6); луч CC1 совпадает с одной из сторон угла ACB (Рис.7); луч CC1 проходит вне угла ACB(Рис.8). Рассмотрим эти три случая по отдельности.

Вариант 1 (Рис.6). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и ∠3=∠4 и, следовательно:

Имеем AC=A1C1, BC=B1C1 ∠ACB=∠A1C1B1 и по первому признаку равенства треугольников . Теорема доказана.

Вариант 2 (Рис.7). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольник BСС1 равнобедренный. Тогда ∠1=∠2. Имеем: AC=A1C1, BC=B1C1, ∠1=∠2 и по первому признаку равенства треугольников . Теорема доказана.

Вариант 3 (Рис.8). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и и, следовательно:

Имеем AC=A1C1, BC=B1C1 и по первому признаку равенства треугольников . Теорема доказана.

Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра — Помощник для школьников Спринт-Олимпиады

Точка пересечения высот треугольника называется ортоцентром и традиционно обозначается латинской буквой H. «Ортос» в переводе с греческого означает «прямой», «правильный». Ортоцентр может находиться внутри фигуры и вне ее. Местоположение зависит только от самой фигуры и не зависит от порядка расположения сторон и вершин.

Что такое высота

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе.

В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Свойства ортоцентра

Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.

Ортоцентр по отношению к фигуре может быть расположен:

  • внутри;
  • снаружи;
  • в вершине (у прямоугольных треугольников)

Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.

Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:

  • биссектрис,
  • высот,
  • медиан.

Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.

Полезные факты

Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.

Пусть:

  • H — ортоцентр в ABC;
  • О — центр описанной окружности.

Тогда:

  • окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
  • отрезок BH вдвое длиннее отрезка АС;
  • середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.

Задача Фаньяно

Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.

  • Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.
  • Площадь ортотреугольника рассчитывается по формуле:
  • Здесь S — площадь, а, b, c — стороны.

Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.

История изучения

Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам

Так их стали называть начиная с 18 века, другое название «особенные».

Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.

В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.

Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.

Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.

ПредыдущаяСледующая

Что такое высота

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Задачи и решения

Задача 1. На сторонах угла CAD отмечены точки B и E так, что точка B лежит на отрезке AC, а точка E − на отрезке AD, причем AC=AD и AB=AE. Докажите, что ∠CBD=∠DEC (Рис.9).

Доказательство. AC=AD, AE=AB, ∠CAD общий для треугольников CAE и DAB. Тогда, по первому признаку равенства треугольников (теорема 1) ⊿ACE=⊿ADB. Следовательно ∠DBA=∠AEC. Поскольку углы CBD и DBA смежные, то CBD=180°−∠DBA. Аналогично CED=180°-∠AEC. То есть ∠CBD=∠DEC. Конец доказательства.

Задача 2. По данным рисунка рис.10 докажите, что OP=OT, ∠P=∠T

Доказательство. OC=OB, ∠TCO=∠PBO=90°. Углы TOC и POB вертикальные (следовательно равны) тогда, повторому признаку равенства треугольников (теорема 2), ⊿TCO=⊿PBO. Конец доказательства.

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

Теорема о высоте прямоугольного треугольника

Если высота в прямоугольном треугольнике ABC длиной
h
{\displaystyle h}

, проведённая из вершины прямого угла, делит гипотенузу длиной
c
{\displaystyle c}

на отрезки
m
{\displaystyle m}

и
n
{\displaystyle n}

, соответствующие катетам
b
{\displaystyle b}

и
a
{\displaystyle a}

, то верны следующие равенства.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию

Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Задача на применение теоремы Пифагора.

Треугольник ABC является прямоугольным. При этом C-прямой угол. Из него проведена высота CD=6см.  Разность отрезков BD-AD=5 см. 

Найти: Стороны треугольника ABC. Решение

1.Составим систему уравнений согласно теореме Пифагора

CD2+BD2=BC2

CD2+AD2=AC2

поскольку CD=6

36+BD2=BC2

36+AD2=AC2

Поскольку BD-AD=5, то

BD = AD+5, тогда система уравнений принимает вид

36+(AD+5)2=BC2

36+AD2=AC2

Сложим первое и второе уравнение. Поскольку левая часть прибавляется к левой, а правая часть к правой — равенство не будет нарушено. Получим: 

36+36+(AD+5)2+AD2=AC2+BC2

72+(AD+5)2+AD2=AC2+BC2

2. Теперь, взглянув на первоначальный чертеж треугольника, по той же самой теореме Пифагора, должно выполняться равенство:

AC2+BC2=AB2

Поскольку AB=BD+AD, уравнение примет вид: 

AC2+BC2=(AD+BD)2

Поскольку BD-AD=5, то BD = AD+5, тогда

AC2+BC2=(AD+AD+5)2 

3. Теперь взглянем на результаты, полученные нами при решении в первой и второй части решения. А именно:

72+(AD+5)2+AD2=AC2+BC2

AC2+BC2=(AD+AD+5)2

Они имеют общую часть AC2+BC2 . Таким образом, приравняем их друг к другу.

72+(AD+5)2+AD2=(AD+AD+5)2

72+AD2+10AD+25+AD2=4AD2+20AD+25

-2AD2-10AD+72=0 

В полученном квадратном уравнении дискриминант равен D=676, соответственно, корни уравнения равны:

х1=-3,5

x2=4 

Поскольку длина отрезка не может быть отрицательной, отбрасываем первый корень.

AD=4

Соответственно

BD = AD + 5 = 9

AB = BD + AD = 4 + 9 = 13

По теореме Пифагора находим остальные стороны треугольника:

AC = корень из (52)

BC = корень из (117).

Треугольник (Трикутник)Описание курса Сумма углов треугольника   

7. Выводы по уроку

Итак, на дан­ном уроке мы рас­смот­ре­ли тео­ре­му о пе­ре­се­че­нии высот тре­уголь­ни­ка и ре­ши­ли шу­точ­ную за­да­чу, в ко­то­рой вспом­ни­ли неко­то­рые важ­ные гео­мет­ри­че­ские факты.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/okruzhnost/teorema-o-peresechenii-vysot-treugolnika

http://interneturok.ru/ru/school/geometry/8-klass/okruzhnost/tochka-peresecheniya-vysot-treugolnika

https://www.youtube.com/watch?v=T9plOhIuxLI

https://www.youtube.com/watch?v=N17Mf2_lwsI

http://nsportal.ru/sites/default/files/2012/03/08/teorema_o_peresechenii_vysot.rar

http://v.5klass.net/zip/b0e55c84942e47c7877236b95f7e5926.zip

http://xn——8kcagmhdbwcfthzc0aadtq7cdj.xn--p1ai/%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F_8_%D0%BA%D0%BB%D0%B0%D1%81%D1%81/%D0%92%D1%8B%D1%81%D0%BE%D1%82%D1%8B_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0_%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F_%D0%B2_%D0%BE%D0%B4%D0%BD%D0%BE%D0%B9_%D1%82%D0%BE%D1%87%D0%BA%D0%B5

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Идеи обучения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: