Сложение одинаковых оснований с разными степенями. умножение и деление чисел со степенями

Таблица примеров

Проверьте на рабочем листе книги Excel следующие примеры. Чтобы все заработало корректно, вам необходимо использовать смешанную ссылку при копировании формулы. Закрепите номер столбца, содержащего возводимое число, и номер строки, содержащей показатель. Ваша формула должна иметь примерно следующий вид: «=$B4^C$3».

Число / Степень

Обратите внимание, что положительные числа (даже нецелые) без проблем вычисляются при любых показателях. Не возникает проблем и с возведением любых чисел в целые показатели

А вот возведение отрицательного числа в дробную степень обернется для вас ошибкой, поскольку невозможно выполнить правило, указанное в начале нашей статьи про возведение отрицательных чисел, ведь четность — это характеристика исключительно ЦЕЛОГО числа.

Начальный уровень

Степень и ее свойства. Исчерпывающий гид (2019)

Зачем нужны степени? Где они тебе пригодятся? Почему тебе нужно тратить время на их изучение?

Чтобы узнать все о степенях, о том для чего они нужны, как использовать свои знания в повседневной жизни читай эту статью.

И, конечно же, знание степеней приблизит тебя к успешной сдаче ОГЭ или ЕГЭ и к поступлению в ВУЗ твоей мечты.

Let»s go… (Поехали!)

Важное замечание! Если вместо формул ты видишь абракадабру, почисти кэш. Для этого нужно нажать CTRL+F5 (на Windows) или Cmd+R
(на Mac).

Стандартный вид числа

В физике и других естественных науках изучаются объекты, чьи характеристики (масса, длина, скорость и т.д.) могут измеряться очень большими или очень малыми величинами. Например, масса атома железа равна 0,0000000000000000000000000927 килограмм, а масса Солнца оценивается в 1988500000000000000000000000000 килограмм. Работать с такими числами достаточно неудобно. Сложно даже сравнивать их между собой, ведь для этого надо подсчитывать количество нулей в каждом числе. Поэтому в науке часто используется особая форма чисел, которую называют стандартным видом числа. Он основан на том, что любое число можно записать как произведение числа a, находящегося в пределах от 1 до 10, и какой-нибудь целой (в том числе отрицательной) степени десятки.

Приведем примеры представления чисел в стандартном виде

90 = 9•10 = 9•101

91 = 9,1•10 = 9,1•101

900 = 9•100 = 9•102

912 = 9,12•100 = 9,12•102

Покажем случаи, когда порядок равен нулю или меньше него

7 = 7•1 = 7•10

7,63 = 7,63•1 = 7,63•10

0,8 = 8•0,1 = 8•10– 1

0,0875 = 8,75•100 = 8,75•10– 2

Посмотрите, насколько короче выглядит запись физических величин с использованием стандартного вида:

  • масса Солнца: 1988500000000000000000000000000 кг = 1,9885•1030 кг;
  • масса Земли: 5970000000000000000000000 кг = 5,97•1024 кг;
  • масса атома железа: 0,0000000000000000000000000927 = 9,27•10-26 кг.

Пример. Укажите стандартный вид числа 76000000.

Решение. Первой ненулевой цифрой в записи является семерка, поэтому стандартный вид будет выглядеть так:

7,6•10n

где n– какое-то целое число, которое нам надо найти. Поставим в исходном числе запятую после семерки:

7,6000000

Видно, что мы отделили запятой 7 разрядов, то есть перенесли запятую на 7 разрядов вправо. Поэтому n равно 7:

76000000 = 7,6•107

Действительно, умножение дробного числа на 10 приводит к смещению запятой на одну позицию влево, поэтому при умножении 7,6 на 107 получим 76000000. Наши действия можно проиллюстрировать рисунком:

В случае с числами, меньшими единицы, также надо смотреть на количество разрядов между запятой и первой ненулевой цифрой. Пусть надо представить в стандартном виде десятичную дробь 0,000005605. Значащей частью числа будет 5,605. Для того чтобы получить ее, надо в исходной дроби перенести запятую на 6 разрядов вправо. Поэтому порядок будет равен (– 6):

Теперь попробуем выполнить обратное преобразование – по стандартному виду числа записать его в привычной нам десятичной форме. Пусть есть запись 2,56•105. Для начала искусственно припишем несколько ноликов к значащей части:

2,56 = 2,5600000

Теоретически мы можем дописать любое количество нулей, величина дроби от этого не изменится. Порядок числа равен 5, а потому запятую надо перенести на 5 знаков вправо:

2,5600000•105 = 256000,00

Теперь лишние нули после запятой и саму запятую можно и убрать:

256000,00 = 256000

Обратите внимание, что порядок числа был равен 5, а в итоге мы получили шестизначное число. Можно сформулировать правило: у числа, имеющего в стандартной виде порядок n, в десятичной представлении перед запятой будет стоять (n + 1)знак

Например:

1,23456789•106 = 1234567,89

Здесь порядок числа равен 6, а потому перед запятой стоит 7 знаков.

Напомним, что если число целое и, соответственно, в его записи нет запятой, то ее можно искусственно добавить:

568 = 568,0

Теперь рассмотрим похожий пример с отрицательным порядком числа. Пусть надо записать в десятичном виде число 9,8765•10– 4. Для этого сначала можно условно «подрисовать» нолики перед значащей частью:

0000009,8765

Порядок равен (– 4), а потому надо передвинуть запятую на 4 знака влево

0000009,8765 =000,00098765

Получается, что мы подрисовали слишком много ноликов. Уберем два из нихи получим число в обычной форме:

0,00098765

Вообще, если у числа отрицательный порядок (– n), то первая ненулевая цифра должна оказаться на n-ой позиции после запятой:

Возведение в степень: определение

Возведение числа в натуральную степень — это умножение его на само себя определенное количество раз. Это такая же операция в алгебре, как сложение, вычитание, умножение или деление.

Если определенное число нужно умножить на себя несколько раз, это значит, что его необходимо возвести в соответствующую степень. Например, если четыре нужно умножить само на себя три раза, это равно тому, что четыре следует возвести в третью степень. Закодировать это выражение можно следующей арифметической записью:

43, где 4 — это основание, а 3 — показатель. Также 43 = 4·4·4 = 64

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Основные правила выполнения данных вычислений:

  • итог возведения отрицательного основания в четную степень — положительный;
  • итог возведения отрицательного основания в нечетную — отрицательный;
  • итог возведения положительного основания в любую — положительный;
  • любое основание с показателем один равно себе;
  • ноль при любом возведении в результате дает ноль;
  • единица с любым показателем равна единице;
  • любое основание с показателем ноль равно единице.

Таблица представляет собой ряд чисел, возведенных в определенные степени.

Парадокс нуля

Здесь все гораздо сложнее, но не настолько, чтобы не разобраться. Известно, что 0x = 0. Например: 04 = 0 × 0 × 0 × 0 = 0 Почему же мы часто встречаем выражение 0 = 1? На самом деле это не совсем верно. Возьмем функцию y = ƒ (x) = xx. Подберем значения по табл.1.

Таблица 1. Функция ƒ(x) = xx

x xx
1 1
0,9 0,909
0,8 0,836
0,7 0,779
0,6 0,736
0,5 0,707
0,4 0,693
0,3 0,697
0,2 0,725
0,1 0,794
0,01 0,955
0,001 0,993

Как видим, с определенного момента значение xx растет вместе с уменьшением x. В этом нет ничего сверхъестественного, это всего лишь пример действия формулы

Изобразим это на графике

Рис.1 График y = ƒ(x) = xxТаким образом, делаем предположение, что это выражение является пределом.

Проверим, вычислив это значение. Преобразуем основание выражения. Получаем:

xx = (eln x)x = ex ln x

В этом случае x → 0, а ln x → -∞ Получаем следующее выражение:

Пользуемся правилом Лопиталя:

Получаем:

Доказательство получено. Официальная позиция современной математики гласит, что выражение 0– представляет собой неопределенность, то есть не имеет точного значения. Однако на практике, при расчетах, его значение подстраивается под конкретные требования. И чаще всего в этих случаях оно равно единице. Чтобы лучше разобраться с темой нулевой степени, советуем посмотреть видео ниже.

Свойства степеней с рациональными показателями

мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

  1. свойство произведения степеней с одинаковыми основаниями при a>0, а если и , то при a≥0;
  2. свойство частного степеней с одинаковыми основаниями при a>0;
  3. свойство произведения в дробной степени при a>0 и b>0, а если и , то при a≥0 и (или) b≥0;
  4. свойство частного в дробной степени при a>0 и b>0, а если , то при a≥0 и b>0;
  5. свойство степени в степени при a>0, а если и , то при a≥0;
  6. свойство сравнения степеней с равными рациональными показателями: для любых положительных чисел a и b, a<b и рациональном p при p>0 справедливо неравенство ap<bp, а при p<0 – неравенство ap>bp;
  7. свойство сравнения степеней с рациональными показателями и равными основаниями: для рациональных чисел p и q, p>q при 0<a<1 выполняется неравенство ap<aq, а при a>0 – неравенство ap>aq.

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на свойствах арифметического корня n-ой степени и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b, a<b и рациональном p при p>0 справедливо неравенство ap<bp, а при p<0 – неравенство ap>bp. Запишем рациональное число p как m/n, где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a<b по свойству степени с целым положительным показателем должно выполняться неравенство am<bm. Из этого неравенства по свойству корней имеем , а так как a и b – положительные числа, то на основе определения степени с дробным показателем полученное неравенство можно переписать как , то есть, ap<bp.

Аналогично, при m<0 имеем am>bm, откуда , то есть, и ap>bp.

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q, p>q при 0<a<1 выполняется неравенство ap<aq, а при a>0 – неравенство ap>aq. Мы всегда можем привести к общему знаменателю рациональные числа p и q, пусть при этом мы получим обыкновенные дроби и , где m1 и m2 – целые числа, а n — натуральное. При этом условию p>q будет соответствовать условие m1>m2, что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 0<a<1 должно быть справедливо неравенство am1<am2, а при a>1 – неравенство am1>am2. Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 0<a<1 выполняется неравенство ap<aq, а при a>0 – неравенство ap>aq.

Действия со степенями: правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом: an = a * a * a * …an.

Причем, левая часть уравнения будет читаться, как a в степ. n.

Например:

  • 23 = 2 в третьей степ. = 2 * 2 * 2 = 8,
  • 42 = 4 в степ. два = 4 * 4 = 16,
  • 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625,
  • 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000,
  • 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло 2-ая ст-нь 3-я ст-нь
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 279
10 100 1000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • an * am = (a)(n+m),
  • an : am = (a)(n-m),
  • (ab ) m=(a)(b*m).

Проверим на примерах:

23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично:

  • 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.
  • (23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

33 + 24 = 27 + 16 = 43,
52 – 32 = 25 – 9 = 16

Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 3)2 = 22 = 4.
А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.. Как производить вычисления в более сложных случаях? Порядок тот же:

Как производить вычисления в более сложных случаях? Порядок тот же:

  • при наличии скобок – начинать нужно с них,
  • затем возведение в степень,
  • потом выполнять действия умножения, деления,
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: am/n.
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Действия с числами в стандартном виде

Стандартный вид чисел удобен тогда, когда есть необходимость сравнивать физические величины, а также перемножать их и делить. Рассмотрим правила сравнения умножения и деления чисел в стандартном виде.

Из двух чисел больше то, у которого больше порядок стандартного вида числа. Так, масса Солнца больше масса Земли, так как у нее порядок равен 30, а у нашей планеты – только 24. Если же порядки одинаковы, то больше то число, у которого больше значащая часть.

Пример. Радиус ядра Солнца оценивается в 1,73•108 м, а радиус Юпитера составляет 6,99•107 м. Какая из этих величин больше?

Решение. Порядок у радиуса ядра Солнца равен 8, а у Юпитера только 7, поэтому радиус ядра Солнца больше радиуса Юпитера.

Пример. Масса протона составляет 1,673•10– 27 кг, а масса нейтрона равна 1,675•10– 27 кг. Какая из этих двух частиц тяжелее?

Решение. У обоих величин одинаковый порядок, равный (– 27). Однако значащая часть у массы нейтрона больше:

1,675 > 1,673

Следовательно, нейтрон тяжелее.

Ответ: Нейтрон тяжелее.

Посмотрим, как перемножать числа, находящиеся в стандартном виде. Переставляя множители местами, можно получить:

(a•10n)•(b•10m) = a•b•10n•10m = (ab)•10n+m

В итоге можно сформулировать правило:

Пример. Земля двигается по своей орбите со средней скоростью 3•104 м/с. Какое расстояние она проходит в течение одного невисокосного календарного года (в каждом таком году 31536000 секунд)?

Решение. Переведем количество секунд в году в стандартный вид

31536000 = 3,1536 •107

Расстояние (обозначим его как S) равно произведению средней скорости на время:

S = 3•104 м/с • 3,1536•107c = 3•3,1536•104 + 7 = 9,4608•1011м.

Ответ: 9,4608•1011м.

Пример. Представьте в стандартном виде произведение чисел 9,5•108 и 1,38•10– 2.

Решение.

(9,5•108)•(1,38•10– 2) = (9,5•1,38)•108 + (– 2) = 13,11•106

Получили число НЕ в стандартном виде, так как 13,11 > 10. Поэтому следует произвести замену 13,11 = 1,311•10:

13,11•106 = 1,311•10•106 = 1,311•107

Ответ: 1,311•107

Теперь попытаемся поделить два числа, находящихся в стандартном виде:

Видно, что справедливо следующее правило:

Пример. Во сколько раз масса Солнца больше массы Земли?

Решение. Выше мы приводили данные, что масса Солнца оценивается в 1,9885•1030 кг, а масса нашей планеты составляет 5,97•1024 кг. Поделим массу звезды на массу планеты:

(1,9885•1030):(5,97•1024) = (1,9885:5,97)•1030 – 24≈0,333•106 = 333000

Получили, что Солнце примерно в 333 тысячи раз тяжелее Земли.

Ответ: В 333000 раз.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим определение степени числа с натуральным показателем. Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для действительного числа a, которое будем называть основанием степени, и натурального числа n, которое будем называть показателем степени. Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n – это выражение вида an, значение которого равно произведению n множителей, каждый из которых равен a, то есть, .В частности, степенью числа a с показателем 1 называется само число a, то есть, a1=a.

Из данного определения понятно, что с помощью степени с натуральным показателем можно кратко записывать произведения нескольких одинаковых множителей. Например, 8·8·8·8 можно записать как степень 84. Это аналогично тому, как с помощью произведения записывается сумма одинаковых слагаемых, к примеру, 8+8+8+8=8·4 (смотрите статью общее представление об умножении натуральных чисел).

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи an таков: «a в степени n». В некоторых случаях также допустимы такие варианты: «a в n-ой степени» и «n-ая степень числа a». Для примера возьмем степень 812, это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа, например, 72 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа, к примеру, 53 можно прочитать как «пять в кубе» или сказать «куб числа 5».

Пришло время привести примеры степеней с натуральными показателями. Начнем со степени 57, здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: десятичная дробь 4,32 является основанием, а натуральное число 9 – показателем степени (4,32)9.

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках

Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2)3 и −23. Выражение (−2)3 – это степень отрицательного числа −2 с натуральным показателем 3, а выражение −23 (его можно записать как −(23)) соответствует числу, противоположному значению степени 23.

Заметим, что встречается обозначение степени числа a с показателем n вида a^n. При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 49. А вот еще примеры записи степеней при помощи символа «^»: 14^(21), (−2,1)^(155). В дальнейшем мы преимущественно будем пользоваться обозначением степени вида an.

Данное выше определение позволяет находить значение степени с натуральным показателем. Для этого нужно вычислить произведение n одинаковых множителей, равных a. Эта тема заслуживает детального рассмотрения в отдельной статье – смотрите возведение в степень с натуральным показателем.

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к понятию корня из числа.

Также стоит изучить свойства степени с натуральным показателем, которые вытекают из данного определения степени и свойств умножения.

Как пользоваться таблицей степеней числа два?

Первый столбец – это степень двойки, который одновременно, обозначает число бит, которое представляет число.
Второй столбец – значение двойки в соответствующей степени (n).

Пример нахождения степени числа 2. Находим в первом столбце число 7. Смотрим по строке вправо и находим значение два в седьмой степени (27) – это 128
Третий столбец – максимальное число, которое можно представить с помощью заданного числа бит (в первом столбце).

Пример определения максимального целого числа без знака. Если использовать данные из предыдущего примера, мы знаем, что 27 = 128. Это верно, если мы хотим понять, какое количество чисел, можно представить с помощью семи бит. Но, поскольку первое число – это ноль, то максимальное число, которое можно представить с помощью семи бит 128 – 1 = 127 . Это и есть значение третьего столбца.

Степень двойки (n) Значение степени двойки 2n Максимальное число без знака,
записанное с помощью n бит
Максимальное число со знаком,

записанное с помощью n бит

1
1 2 1
2 4 3 1
3 8 7 3
4 16 15 7
5 32 31 15
6 64 63 31
7 128 127 63
8 256 255 127
9 512 511 255
10 1 024 1 023 511
11 2 048 2 047 1023
12 40 96 4 095 2047
13 8 192 8 191 4095
14 16 384 16 383 8191
15 32 768 32 767 16383
16 65 536 65 535 32767
17 131 072 131 071 65 535
18 262 144 262 143 131 071
19 524 288 524 287 262 143
20 1 048 576 1 048 575 524 287
21 2 097 152 2 097 151 1 048 575
22 4 194 304 4 194 303 2 097 151
23 8 388 608 8 388 607 4 194 303
24 16 777 216 16 777 215 8 388 607
25 33 554 432 33 554 431 16 777 215
26 67 108 864 67 108 863 33 554 431
27 134 217 728 134 217 727 67 108 863
28 268 435 456 268 435 455 134 217 727
29 536 870 912 536 870 911 268 435 455
30 1 073 741 824 1 073 741 823 536 870 911
31 2 147 483 648 2 147 483 647 1 073 741 823
32 4 294 967 296 4 294 967 295 2 147 483 647

Необходимо принять во внимание, что не все числа в компьютере представлены таким образом. Существуют и другие способы представления данных

Например, если мы хотим записывать не только положительные, но и отрицательные числа, то нам потребуется еще один бит для хранения значения “плюс/минус”. Таким образом, количество бит, предназначенных для хранения чисел у нас уменьшилось на один. Какое максимальное число может быть записано в виде целого числа со знаком можно посмотреть в четвертом столбце.

Для этого же самого примера ( 27) семью битами можно записать максимум число +63, поскольку один бит занят знаком “плюс”. Но мы можем хранить и число “-63“, что было бы невозможно, если бы все биты были бы зарезервированы под хранение числа.

Степень с целым показателем

После того как мы определили степень числа a с натуральным показателем, возникает логичное стремление расширить понятие степени и перейти к степени числа, показателем которой будет любое целое число, в том числе и отрицательное и нуль. Это следует делать так, чтобы оставались справедливыми все свойства степени с натуральным показателем, так как натуральные числа являются частью целых чисел.

Степень числа a с целым положительным показателем есть не что иное как степень числа a с натуральным показателем: , где n – целое положительное число.

Теперь определим нулевую степень числа a. Будем исходить из свойства частного степеней с одинаковыми основаниями: для натуральных чисел m и n, m<n и отличного от нуля действительного числа a выполняется равенство am:an=am−n (условие a≠0 необходимо, так как в противном случае мы бы имели деление на нуль). При m=n записанное равенство нас приводит к следующему результату an:an=an−n=a. Но с другой стороны an:an=1 как частное равных чисел an и an. Следовательно, приходится принять a=1 для любого отличного от нуля действительного числа a.

А как же быть с нулем в нулевой степени? Подход, примененный в предыдущем абзаце, не подходит для этого случая. Можно вспомнить про свойство произведения степеней с одинаковыми основаниями am·an=am+n, в частности при n=0 имеем am·a=am (из этого равенства тоже видно, что a=1). Однако, при a=0 мы получим равенство 0m·0=0m, которое можно переписать как 0=0, оно верно при любом натуральном m вне зависимости от того, чему равно значение выражения 0. Иными словами, 0 может быть равно любому числу. Чтобы избежать этой многозначности, не будем приписывать нулю в степени нуль никакого смысла (по этим же соображениям при изучении деления мы не стали придавать смысл выражению 0:0).

Несложно проверить, что принятое нами равенство a=1 для отличных от нуля чисел a согласуется со свойством степени в степени (am)n=am·n. Действительно, при n=0 имеем (am)=1 и am·0=a=1, а при m=0 имеем (a)n=1n=1 и a0·n=a=1.

Так мы пришли к определению степени с нулевым показателем. Степень числа a с нулевым показателем (a отличное от нуля действительное число) равна единице, то есть, a=1 при a≠0.

Приведем примеры: 5=1, (33,3)=1, , а 0 – не определено.

Нулевую степень числа a определили, осталось определить целую отрицательную степень числа a. В этом нам поможет все то же свойство произведения степеней с одинаковыми основаниями am·an=am+n. Примем m=−n, что требует условия a≠0, тогда a−n·an=a−n+n=a=1, откуда заключаем, что an и a−n – взаимно обратные числа. Таким образом, логично определить число a в целой отрицательной степени −n как дробь . Несложно проверить, что при таком задании степени отличного от нуля числа a с целым отрицательным показателем остаются справедливыми все свойства степени с натуральным показателем (смотрите свойства степени с целым показателем), к чему мы и стремились.

Озвучим определение степени с целым отрицательным показателем. Степень числа a с целым отрицательным показателем −n (a отличное от нуля действительное число) – это есть дробь , то есть, при a≠0 и натуральном n.

Рассмотрим данное определение степени с целым отрицательным показателем на конкретных примерах: .

Подытожим информацию этого пункта.

Определение.

Степень числа a с целым показателем z определяется так: 

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Идеи обучения
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: