Строение атома углерода.
Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14C с периодом полураспада 5730 лет, обладающий b-излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO2. После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14С. Снижение b-излучения 14CO2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии. См. также ДАТИРОВКА ПО РАДИОАКТИВНОСТИ.
В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s22s22px12py12pz. Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s-электронов и перескок одного из этих электронов на 2pz-орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF4 и CCl4. Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См. ХИМИЯ ОРГАНИЧЕСКАЯ.
В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений
Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды)
углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).
В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана. См. также ФУЛЛЕРЕНЫ.
Карбин
Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена — по меньшей мере в два раза меньше.
Тонкая нить, тянущаяся к железной частице внизу — карбин
Wikimedia Commons
Поделиться
Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации — при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен— диэлектрик.
Главная сложность в изучении карбинов — их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день получены цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе — его удастся уменьшить до одного атома.
Влияние углерода на структуру и свойства сталей
Предыдущая10Следующая
Механические свойства углеродистой стали зависят главным образом от содержания углерода. С ростом содержания углерода в стали увеличивается количество цементита и соответственно уменьшается количество феррита, т.е. повышаются прочность и твердость и уменьшается пластичность. Как видно из графика, приведенного на рис. 150, прочность повышается только до 1% С, а при более высоком содержании углерода она начинает уменьшаться. Происходит это потому, что образующаяся по границам зерен в заэвтектоидных сталях сетка вторичного цементита снижает прочность стали.
Кроме углерода, в стали есть еще другие элементы — примеси, присутствие которых обусловлено разными причинами.
4.5. Влияние примесей на свойства железоуглеродистых сплавов
На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода; полезных — кремния, марганца и др.). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор; из металлического лома — хром, никель и др.; в процессе раскисления — кремний и марганец.
Влияние углерода. Углерод в железоуглеродистом сплаве находится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в чугунах. С увеличением содержания углерода возрастает твердость, прочность и уменьшается пластичность.
Влияние серы. Сера является вредной примесью. Она образует легкоплавкую эвтектику FeS + Fе. При кристаллизации сплава легкоплавкая эвтектика располагается по границам зерен и при повторном нагреве расплавляется, в результате чего нарушается связь между зернами, что приводит к образованию трещин и надрывов. Это явление носит название красноломкости. Допускается содержание серы до 0,06%.
Влияние фосфора. Фосфор — вредная примесь, растворяясь в γ-
и α- железе, искажает кристаллическую решетку и ухудшает пластические свойства сплава. Фосфор вызывает явление хладноломкости, и его содержание в сталях не должно превышать 0,08%. В чугуне допускается до 0,3% Р.
Влияние азота, кислорода и водорода. Эти элементы присутствуют в сплавах или в составе хрупких неметаллических включений или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).
Влияние кремния и марганца. Кремний, растворяясь в феррите, повышает предел текучести и уменьшает склонность к хладноломкости. Кремний способствует графитизации чугуна.
Марганец образует твердый раствор с железом и немного повышает твердость и прочность феррита. В присутствии серы он частично связывается с серой в сернистый марганец и переходит в шлак. При содержании марганца более 1,5 % снижаются пластические свойства стали. В сталях содержится обычно не более 0,4 % Si и 0,8 % Мn.
Предыдущая10Следующая
Дата добавления: 2018-05-10; просмотров: 1755; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Аллотропные модификации углерода
Углерод — уникальный химический элемент, который образует так называемые аллотропные модификации, или, проще говоря, различные формы. Эти модификации подразделяются кристаллические, аморфные и в виде кластеров.
Кристаллические модификации имеют правильную кристаллическую решётку. К этой группе относятся: алмаз, фуллерит, графит, лонсдейлит, углеродные волокна и трубки. Подавляющее большинство кристаллических модификаций углерода на первых местах в рейтинге «Самые твёрдые материалы в мире» .
Аллотропные формы углерода: a) лонсдейлит; б) алмаз;в) графит; г) аморфный углерод; д) C60 (фуллерен); е) графен;ж) однослойная нанотрубка
Аморфные формы образованы углеродом с небольшими примесями других химических элементов. Основные представители этой группы: уголь (каменный, древесный, активированный), сажа, антрацит.
Самыми сложными и высокотехнологичными являются соединения углерода в виде кластеров. Кластеры — это особая структура, при которой атомы углерода расположены таким образом, что образуют полую форму, которая заполнена изнутри атомами других элементов, например, воды. В этой группе не так уж и много представителей, в неё входят углеродные наноконусы, астралены и диуглерод.
Графит — «тёмная сторона» алмаза
Углерод в природе
Содержание углерода в земной коре составляет всего около 0,15%. Казалось бы, один из основных элементов, а так мало… На самом деле, углерод подвержен постоянному круговороту из земной коры через биосферу в атмосферу и наоборот. Из углерода состоят природный газ, нефть, уголь, торф, известняки и многие другие соединения.
Наиболее значимое количество углерода собрано в атмосфере и гидросфере в виде углекислого газа. В атмосфере углерода содержится около 0,046%, а еще больше — в растворенном виде в Мировом Океане.
Кроме того, как мы видели выше, углерод является основой живых организмов. Например, в теле человека массой 70 кг содержится около 13 кг углерода! Это только в одном человеке! А углерод содержится также во всех растениях и животных. Вот и считайте…
Круговорот углерода в природе
Углерод — что это за химический элемент
Углерод (C, лат. carboneum) — является химическим элементом с атомным номером 6, который обозначают буквой C.
Элемент представляет собой неметалл, обладает четырьмя электронами на внешнем слое для образования ковалентных химических связей. Углерод расположен в 14-й (по устаревшей классификации — в 4-й) группе Периодической системы. Атомная масса (молярная масса) углерода составляет 12,0116 а. е. м. (г/моль). В природе встречается в виде трех изотопов.
Стабильные изотопы углерода:
Радиоактивный изотоп углерода с периодом полураспада в 5730 лет:
Атомы углерода обладают способностью формировать длинные цепи (разветвленные и неразветвленные), а также циклы. По этой причине существует большой класс углеродных соединений, известных в химии и биологии как органические соединения. Подобных веществ значительно больше по сравнению с неорганическими. Органические соединения изучают в рамках отдельного раздела химии — органической химии.
По оценкам, содержание атомов углерода на Земле составляет 730 ppm:
- 2000 ppm вещества находится в ядре;
- 120 ppm углерода включено в состав мантии и коры.
Масса Земли равна 5,972⋅1024килограмм. Исходя из этих данных, можно определить, что планета содержит 4360 миллионов гигатонн углерода. Свободный углерод встречают в природном мире в следующих видах:
- алмаз;
- графит.
Основная масса углерода представлена природными карбонатами (известняки и доломиты) и горючими ископаемыми:
- антрацит (94—97% С);
- бурые угли (64—80% С);
- каменные угли (76—95% С);
- горючие сланцы (56—78% С);
- нефть (82—87% С);
- горючие природные газы (до 99% метана);
- торф (53—56% С);
- битумы.
Атмосфера и гидросфера содержит элемент в виде диоксида углерода СО2, в воздухе присутствует около 0,046 % СО2 по массе, в водах рек, морей и океанов в примерно 60 раз больше. Углерод является важным составным компонентом растительных и животных организмов (около 17,5%).
Человек потребляет углерод вместе с пищей. Норма потребления составляет примерно 300 грамм в день. Общая концентрация вещества в человеческом организме приблизительно 21% (15 кг на 70 кг массы тела). Углерод составляет:
- 2/3 массы мышц;
- 1/3 массы костной ткани.
Вывод углерода из организма осуществляется по большей части с помощью:
- выдыхаемого воздуха (углекислый газ);
- мочи (мочевина).
Процессы, которые входят в круговорот углерода в природном мире:
- биологический цикл;
- выделение углерода в атмосферу в результате сгорания ископаемого топлива;
- выделение газа из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод;
- дыхание, брожение, гниение.
Биологический цикл заключается в процессе поглощения углерода в виде СО2 из тропосферы растениями при фотосинтезе. На следующем этапе из биосферы газообразное вещество снова возвращается в геосферу, частично через организмы животных и человека, и в виде СО2 — в атмосферу. В состоянии пара, а также в форме соединений с азотом и водородом углерод найден в атмосфере Солнца, планет, в каменных и железных метеоритах.
Превалирующее число соединений углерода, особенно, углеводороды, являются соединениями с ковалентными химическими связями. Широкий спектр углеродсодержащих соединений объясняется следующими причинами:
- прочность одинарных, двойных и тройных связей между атомами С;
- способность атомов углерода формировать стабильные цепи и циклы.
Свойства соединений углерода
Углерод образует два оксида:
- угарный газ СО;
- углекислый газ СО2.
Задание 13.6. Назовите эти оксиды. Определите характер этих оксидов. В каком из них углерод проявляет высшую степень окисления?
Угарный газ СО — несолеобразующий оксид*, т. е. он не образует неорганических солей ни с кислотами, ни с основаниями.
Имея промежуточную степень окисления (+2), углерод может быть и окислителем, и восстановителем, но для него более характерны восстановительные свойства:
Реакция (4) происходит в доменных печах при выплавке чугуна из железных руд (см. также урок 11.2). Реакция (3) происходит, когда появляются синие огоньки на непрогоревших углях в костре, печке. Дело в том, что угарный газ образуется при контакте углекислого газа (продукт сгорания любого топлива) с горячими углями при недостатке кислорода:
При достаточном доступе воздуха (кислорода) угарный газ сгорает полностью. Но если тяга плохая (доступ кислорода затруднён), то реакция (3) не происходит и угарный газ попадает в помещение. А это смертельный яд!
Углекислый газ дыхания не поддерживает, но и не ядовит.
Вопрос. Почему СО2 не горит в кислороде?
Имея высшую степень окисления, атом углерода углекислого газа С+4 : может быть только окислителем и с окислителем (кислородом) не реагирует. По этой же причине углекислый газ может реагировать с активными восстановителями (активными металлами, раскалённым углём:
Углекислый газ СО2 — кислотный оксид и образует при взаимодействии с водой слабую и неустойчивую угольную кислоту, которая существует только в растворах:
Угольную кислоту пил каждый, так как это обычная газированная вода. Она слегка пощипывает язык, но совсем не обжигает, потому что это слабая кислота.
Эта двухосновная кислота образует два вида солей — карбонаты (средние соли) и гидрокарбонаты (кислые соли):
Задание 13.7. Расставьте коэффициенты в последних двух уравнениях и определите, от чего зависит состав полученной соли.
Вопрос. Как, используя эти соли, получить углекислый газ?
Угольная кислота получается при действии более сильных кислот на карбонаты и гидрокарбонаты. Но в момент получения неустойчивая угольная кислота разлагается на углекислый газ и воду. Поэтому при действии более сильной, чем угольная, кислоты на карбонат выделяется углекислый газ:
Это качественная реакция на любые карбонаты, даже в смеси: если исследуемая смесь сухая, то под действием кислоты она «зашипит» из-за выделения газа.
Углекислый газ не имеет вкуса и запаха, не поддерживает горения (тлеющая лучинка гаснет в атмосфере углекислого газа), а при пропускании через известковую воду вызывает её помутнение:
Пользуясь химическими реакциями (5) и (6), а также зная свойства углекислого газа, можно обнаружить карбонаты и гидрокарбонаты в растворах и твёрдых смесях. Для этого нужно к твёрдой смеси добавить любую кислоту: смесь зашипит, если в её состав входит соль угольной кислоты. Если эта соль находится в растворе, то после добавления кислоты в нём появляются пузырьки углекислого газа. Так можно получить «газированный напиток».
Реакцию (5) можно использовании при получении СО2 в лаборатории.
Поскольку угольная кислота слабая, — все растворимые карбонаты подвергаются гидролизу.
Задание 13.8. Составьте уравнение реакции гидролиза карбоната калия (поташа).
В результате реакции гидролиза образуется щелочная среда, поэтому такие карбонаты как сода Na2СО3 и поташ К2СО3 используются как заменители щелочей, например при варке мыла.
Гидрокарбонаты слабо подвергаются гидролизу и, в отличие от карбонатов, легко разлагаются при нагревании:
Поэтому питьевую соду NаНСО3 добавляют в печенье и другие мучные кондитерские изделия, которые от этого становятся более пышными и рыхлыми. Питьевую соду применяют при производстве шипучих напитков (в присутствии органических кислот образуется углекислый газ), ею заправляют огнетушители, её же используют в медицине для полосканий и ингаляций.
Одинарные химические связи углерода
При объединении 2 неспаренных электронов 2 разных элементов, образуется одинарная связь.
Рассмотрим на конкретном примере, каким образом можно изобразить на бумаге структурные формулы веществ,имеющих состав С4H9Cl.
Помня о том, сколько связей может образовывать атом углерода, рисуем углеродный скелет органической молекулы (см. рис.3 а). Связи между атомами углерода ковалентные неполярные, т.к. образованы элементами с одинаковой электроотрицательностью.
Затем добавим к этому углеродному скелету атомы водорода и хлора (см. рис 3 б). Образовавшиеся связи хлор-углерод и углерод-водород – ковалентные полярные, т.к. образованы элементами с разной электроотрицательностью.Кроме изображенной на рисунке структурной формулы, для вещества состава С4H9Cl можно записать и некоторые другие (см. рис. 3 в). Ковалентные связи, образуемые атомом углерода, позволяют создать огромное количество соединений, у которых физические и химические свойства будут уникальны.
Рисунок 3. – Этапы построения органической молекулы
Формулу органического соединения, представленного на рисунке 3 б, можно записать проще, не изображая столько разветвлений.
Кратные связи углерода
В некоторых молекулах атомы углерода могут образовывать двойные и даже тройные связи
Это такой тип связей, на которые стоит обращать внимание, изучая строение веществ, потому что их наличие в молекуле придает соединению определенные свойства. Например, соединения с чередующимися кратными и одинарными связями могут проводить электрический ток
Помимо кратных связей между собой, атом углерода образует двойные связи и с другими элементами (N, P, O, S). На схеме ниже представлен пример органической молекулы, которая содержит связи разных типов.
Разнообразие органических молекул
Молекулы органических соединений являются «кирпичиками» в построении живой материи и различных веществ. На свойства таких веществ влияет количество атомов в молекуле и их расположение друг относительно друга в пространстве. По строению органических молекул определяют их реакционные способности, цвет и токсичность.
Знание строения материалов позволило выбирать самые качественные для использования в постройке домов, автомобилей, ракет и многих других конструкций.
Одна из задач химиков-органиков получить материалы с определенным порядком расположения молекул.
Форма, объем, а также расположение молекулы в пространстве, зависят от того, в каких направлениях в ней связаны атомы. Это может быть объемная структура, расположение в одной плоскости или линяя.
Если бы мы рассмотрели расположение орбиталей в возбужденном состоянии атома углерода, и присоединили другие элементы к его s и p орбиталям, то все получившиеся молекулы имели бы строго объемное строение, однако на практике это не так. Чтобы объяснить расположение атомов в молекуле и пространстве, было предложено понятие гибридизации.
Аллотропия углерода
Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.
Выделяют два вида углерода в зависимости от образования модификаций:
-
Кристаллический углерод входит в состав твердых веществ (алмаз, графит, графен, фуллерен, карбин).
-
Аморфный углерод образует мягкие вещества (уголь, кокс, сажа).
Рассмотрим подробнее основные аллотропные модификации углерода, их физические свойства и применение.
Алмаз
Алмаз — трехмерный полимер, бесцветное кристаллическое вещество, самый твердый природный минерал, имеет высокую теплопроводность. Его используют в промышленности для обработки различных твердых материалов, для бурения горных пород. Несмотря на то что алмаз твердый, в то же время он хрупкий. Получающийся при измельчении алмаза порошок применяют для шлифовки драгоценных камней. Хорошо отшлифованные прозрачные алмазы называют бриллиантами.
В кристаллической решетке атомы углерода связаны ковалентной связью. Расстояние между всеми атомами одинаковое, поэтому связи прочные по всем направлениям.
Одно из уникальных свойств алмазов — способность преломлять свет (люминесценция). При действии излучения алмазы начинают светиться разными цветами. Такая игра света, хороший показатель преломления и прозрачность делают этот драгоценный камень одним из самых дорогих. При этом необработанный алмаз не обладает такими качествами.
В промышленных масштабах алмазы получают при высоком давлении (тысячи МПа) и высоких температурах (1 500–3 000 °С). Процесс протекает в присутствии катализатора (например, Ni).
При нагревании алмаза до 1 000 °С и высоком давлении без доступа воздуха получают графит. При температуре 1 750 °С переход из алмаза в графит протекает существенно быстрее. При прокаливании в кислороде алмаз сгорает, образуя диоксид углерода.
Графит
Графит — темно-серое мягкое кристаллическое вещество со слабым металлическим блеском. Хорошо электро- и теплопроводен, стоек при нагревании в вакууме. Имеет слоистую структуру. На поверхности оставляет черные черты. На ощупь графит жирный и скользкий.
Графит термодинамически устойчив, поэтому в расчетах термодинамических величин он принимается в качестве стандартного состояния углерода.
На воздухе графит не загорается даже при сильном накаливании, но легко сгорает в чистом кислороде с образованием диоксида углерода.
При температуре 3 000 °С в электрических печах получают искусственный графит из лучших сортов каменного угля.
Графен
Графен представляет собой монослой графита. Впервые графен был получен ручным механическим отщеплением в лабораторных условиях, что не предполагает широкого производства.
В более крупных масштабах графен получают при помощи нагревания кремниевых пластин, верхний слой которых состоит из карбида кремния. Под действием высоких температур происходит отщепление атомов углерода, которые остаются на пластинке в виде графена, а кремний испаряется. Графен представляет собой тонкое и прочное вещество с высокой электропроводностью. В настоящее время он широко используется в микроэлектронике и автомобилестроении.
Карбин
Карбин — твердое черное вещество. Состоит из линейных полимерных цепей, которые соединены чередующимися одинарными и тройными связями в линейные цепочки: −С≡С−С≡С−С≡С−.
Впервые карбин был открыт в 60-х годах, но его существование не признавали до тех пор, пока его не обнаружили в природе — в метеоритном веществе.
Карбин — полупроводник, под действием света его проводимость сильно увеличивается. Переход в графит возможен при нагревании до 2 300 °С.
Карбин применяют в медицине для изготовления искусственных кровеносных сосудов.
Уголь
Уголь — мельчайшие кристаллики графита, полученные путем термического разложения углеродсодержащих соединений без доступа воздуха.
Угли имеют разные свойства в зависимости от веществ, из которых получены. Наиболее важные сорта угля — кокс, древесный уголь, сажа.
-
Кокс получается при нагревании каменного угля без доступа воздуха. Применяется в металлургии при выплавке металлов из руд.
-
Древесный уголь образуется при нагревании дерева без доступа воздуха. Благодаря пористому строению он обладает высокой адсорбционной способностью.
-
Сажа — очень мелкий графитовый кристаллический порошок. Образуется при сжигании углеводородов (природного газа, ацетилена, скипидара и др.) с ограниченным доступом воздуха.
Активные угли — пористые промышленные адсорбенты, получаемые из твердого топлива, дерева и продуктов его переработки. Применяются для поглощения паров летучих жидкостей из воздуха.
Физические свойства
Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими и химическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа. Основные физические свойства собственно углерода смотри в таблице.
Изотопы углерода
Подробнее в статье изотопы углерода
Природный углерод состоит из двух стабильных нуклидов — 12С (98,892 %) и 13С (1,108 %)и одного радиоактивного нуклида 14С (β-излучатель, Т½= 5730 лет), состредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.
На образовании и распаде 14С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.